

 [image: t-SNE example]

singlet

Single cell RNA-Seq analysis with quantitative phenotypes.

Requirements

Python 3.4+ is required. Moreover, you will need:

	pyyaml

	numpy

	scipy

	pandas

	xarray

	scikit-learn

	matplotlib

	seaborn

Optional requirements

	umap (for UMAP dimensionality reduction)

Get those from pip or conda.

Install

To get the latest stable version, use pip:

pip install singlet

To get the latest development version, clone the git repo and then call:

python3 setup.py install

Usage example

You can have a look inside the test folder for examples. To start using the example dataset:

	Set the environment variable SINGLET_CONFIG_FILENAME to the location of the example YAML file

	Open a Python/IPython shell and type:

from singlet.dataset import Dataset
ds = Dataset(
 samplesheet='example_sheet_tsv',
 counts_table='example_table_tsv')

ds.counts = ds.counts.iloc[:200]
vs = ds.dimensionality.tsne(
 n_dims=2,
 transform='log10',
 theta=0.5,
 perplexity=0.8)
ax = ds.plot.scatter_reduced_samples(
 vs,
 color_by='quantitative_phenotype_1_[A.U.]')
plt.show()

This will calculate a t-SNE embedding of the first 200 features and then show your samples in the reduced space. It should look like this:

[image: t-SNE example]

Note

The figure looks different on OSX, but no worries, if you got there without errors chances are all is working correctly!

Contents

	Examples

	Configuration

	API

Indices and tables

	Index

	Module Index

	Search Page

Examples

	Example: Quality controls

	Example: Principal Component Analysis

	Example: t-SNE

	Example: Feature Selection

	Example: Split and compare

	Example: Classification of cell populations

	Example: Loom file

Example: Feature Selection

It is typical in scRNA-Seq experiments to filter out features that are not expressed in any sample, or at low levels in very few samples. Moreover, of all remaining features, it is customary to select highly variable features for some applications such as dimensionality reduction.

from singlet.dataset import Dataset
ds = Dataset(
 samplesheet='example_sheet_tsv',
 counts_table='example_table_tsv')

ds.counts.normalize('counts_per_million', inplace=True)

This selects only genes that are present at >= 5 counts per million in at least 2 samples
ds.feature_selection.expressed(
 n_samples=2,
 exp_min=5,
 inplace=True)

This selects highly variable features
ds.feature_selection.overdispersed_strata(
 inplace=True)

Example: Loom file

Loom files are becoming a common way of sharing single cell transcriptomic data. In a loom file, a counts table, a samplesheet, and a featuresheet are kept together inside a single file with an extension .loom. singlet supports reading from loom files via config files.

Your singlet.yml must contain a section such as:

datasets:
 ds1:
 path: xxx.loom
 format: loom
 axis_samples: columns
 index_samples: Cell
 index_features: Gene

Then you can load you Dataset easily:

from singlet.dataset import Dataset
ds = Dataset(dataset='ds1')

To export a Dataset to a loom file, you can use the method to_dataset_file:

from singlet.dataset import Dataset
ds = Dataset(dataset='ds1')
ds.to_dataset_file('xxx.loom')

Example: Classification of cell populations

A typical application of scRNA-Seq is classification of cell populations in a heterogeneous tissue. In this example, ~200 Peripheral Mononuclear Blood Cells (PBMCs) are classified using feature selection, dimensionality reduction, and unsupervised clustering.

import matplotlib.pyplot as plt
from singlet.dataset import Dataset

ds = Dataset(counts_table='example_PBMC')

Normalize
ds.counts.normalize(method='counts_per_million', inplace=True)
ds.counts.log(inplace=True)

Select features
ds.feature_selection.expressed(n_samples=3, exp_min=1, inplace=True)
ds.feature_selection.overdispersed_strata(
 n_features_per_stratum=20,
 inplace=True)

Reduce dimensionality
vs = ds.dimensionality.tsne(
 n_dims=2,
 theta=0.5,
 perplexity=0.8)

Reset the counts with the reduced values
ds.counts = vs.T

Cluster
ds.samplesheet['dbscan'] = ds.cluster.dbscan(eps=5, axis='samples')
ds.samplesheet['kmeans'] = ds.cluster.kmeans(n_clusters=7, axis='samples')

Plot t-SNE
fig, axs = plt.subplots(
 nrows=1, ncols=2, sharex=True, sharey=True,
 figsize=(8, 4))
ds.plot.scatter_reduced_samples(vs, color_by='dbscan', ax=axs[0], zorder=10)
ds.plot.scatter_reduced_samples(vs, color_by='kmeans', ax=axs[1], zorder=10)

axs[0].set_title('DBSCAN')
axs[1].set_title('K-means, 7 clusters')

plt.tight_layout()
plt.show()

You should get figures similar to the following one:

[image: PBMC clusters]

Example: Principal Component Analysis

Principal Component Analysis (PCA) is a popular dimensionality reduction method. Because outlier samples can strongly affect the results of PCA, singlet also implements a robust PCA version via Principal Component Pursuit (cite).

from singlet.dataset import Dataset
ds = Dataset(
 samplesheet='example_sheet_tsv',
 counts_table='example_table_tsv')

ds.counts.normalize('counts_per_million', inplace=True)
ds.counts = ds.counts.iloc[:200]

print('Calculate PCA')
vs = ds.dimensionality.pca(
 n_dims=2,
 transform='log10',
 robust=False)['vs']

print('Plot PCA')
ax = ds.plot.scatter_reduced_samples(
 vs,
 color_by='ACTB')

plt.show()

You should get figures similar to the following ones:

[image: PCA]

Example: Quality controls

A typical task right off the bat in single-cell sequencing projects is to look at some statistics of the sequencing reads, for instance the number of reads for each cell (coverage), the fraction of mapped reads, and the abundance of spike-in controls and housekeeping genes.

from singlet.dataset import Dataset
ds = Dataset(
 samplesheet='example_sheet_tsv',
 counts_table='example_table_tsv')

print('Plot coverage')
ax = ds.plot.plot_coverage(color='blue', lw=3)
ax = ds.plot.plot_coverage(
 features='other', color='red', linewidth=1,
 ax=ax)

print('Plot spike-in distributions')
ax = ds.plot.plot_distributions(
 kind='swarm',
 features='spikeins',
 orientation='horizontal',
 sort='descending')

print('Plot normalized distributions of housekeeping genes')
ds.counts.normalize('counts_per_million', inplace=True)
ax = ds.plot.plot_distributions(
 kind='swarm',
 features=['ACTB', 'TUBB1', 'GAPDH'],
 orientation='vertical',
 bottom='pseudocount',
 grid=True,
 sort='descending')

plt.show()

You should get figures similar to the following ones:

[image: coverage]
[image: spike-in distributions]
[image: houswkeeping gene distributions]

Example: Split and compare

Singlet allows you to split a dataset based on metadata in a single line. Moreover, it is easy to perform statistical comparisons between two datasets, comparing feature expression and/or phenotypes with any statistical test you like.

from singlet.dataset import Dataset
ds = Dataset(
 samplesheet='example_sheet_tsv',
 counts_table='example_table_tsv')

ds.counts.normalize('counts_per_million', inplace=True)

Split dataset based on metadata
dataset_dict = ds.split('experiment')

Statistical comparison of features between datasets
dataset_dict['test_pipeline'].compare(
 dataset_dict['exp1'],
 method='mann-whitney')

Note

Mann-Whitney’s U test and two sample Kolmogorov-Smirnov’s test are built-ins, but you can just set method to any function you want that calculates the P-values.

Example: t-SNE

t-SNE [tsne] is a commonly used algorithm to reduce dimensionality in single cell data.

from singlet.dataset import Dataset
ds = Dataset(
 samplesheet='example_sheet_tsv',
 counts_table='example_table_tsv')

ds.counts.normalize('counts_per_million', inplace=True)
ds.counts = ds.counts.iloc[:200]

print('Calculate t-SNE')
vs = ds.dimensionality.tsne(
 n_dims=2,
 transform='log10',
 theta=0.5,
 perplexity=0.8)

print('Plot t-SNE')
ax = ds.plot.scatter_reduced_samples(
 vs,
 color_by='quantitative_phenotype_1_[A.U.]')

plt.show()

You should get figures similar to the following ones:

[image: tsne]

	tsne

	L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9(Nov):2579-2605, 2008.

Configuration

Singlet is designed to work on separate projects at once. To keep projects tidy and independent, there are two layers of configuration.

The SINGLET_CONFIG_FILENAME environment variable

If you set the environment variable SINGLET_CONFIG_FILENAME to point at a YAML file, singlet will use it to configure your current session. To use separate sessions in parallel, just prepend your scripts with:

import os
os.environ['SINGLET_CONFIG_FILENAME'] = '<full path to config file>'

and each will work totally independently.

The configuration file

Singlet loads a configuration file in YAML [http://www.yaml.org/start.html] format when you import the singlet module. If you have not specified the location of this file with the SINGLET_CONFIG_FILENAME environment variable, it defaults to:

<your home folder>/.singlet/config.yml

so the software will look there. An example configuration file is online [https://github.com/iosonofabio/singlet/blob/master/example_data/config_example.yml]. If you are not familiar with YAML syntax, it is a bit like Python dictionaries without brackets… or like JSON.

Before going into the specifics, here’s a schematic example of the configuration file:

io:
 samplesheets:
 ss1:
 path: xxx.csv
 index: samplename

 featuresheets:
 fs1:
 path: yyy.csv
 index: EnsemblGeneID

 count_tables:
 ct1:
 path: zzz.csv
 normalized: no
 spikeins:
 - ERCC-00002
 - ERCC-00003
 other:
 - __alignment_not_unique
 - __not_aligned

 datasets:
 ds1:
 path: xxx.loom
 format: loom
 axis_samples: columns
 index_samples: Cell
 index_features: Gene

Now for the full specification, the root key value pairs are:

	io: for input/output specifications. At the moment this key is the only master key and is required.

There are no root lists.

io

The io section has the following key value pairs:

	samplesheets: samplesheet files or Google Documents (for sample metadata).

	featuresheets: featuresheet files (for feature/gene annotations or metadata).

	count_tables: count table files.

	datasets: integrated datasets (a single file contains all three properties above, e.g. loom [http://loompy.org/] files).

samplesheets

	The samplesheets section contains an arbitrary number of key value pairs and no lists. Each entry describes a samplesheet and has the following format:

	
	the key determines the id of the samplesheet: this id is used in the contstructor of Dataset.

	the value is a series of key value pairs, no lists.

	Singlet can source samplesheets either from a local file or from an online Google Sheet. If you want to use a local file, use the following key value pairs:

	
	path: a filename on disk containing the samplesheet, usually in CSV/TSV format.

	format: a file format of the samplesheet (optional). If missing, it is inferred from the path filename.

	If you prefer to source an online Google Sheet, use the following key value pairs:

	
	url: the URL of the spreadsheet, e.g. ‘https://docs.google.com/spreadsheets/d/15OKOC48WZYFUQvYl9E7qEsR6AjqE4_BW7qcCsjJAD6w’ for the example sheet.

	client_id_filename: a local filename (initially empty) where your login information for OAUTH2 is stored. This is a JSON file so this variable typically ends with .json

	client_secret_filename: a local filename (initially empry) where your secret information for OAUTH2 is stored. This is a JSON file so this variable typically ends with .json

	sheet: the name of the sheet with the data within the spreadsheet.

	Whichever way you are using to source the data, the following key value pairs are available:

	
	description: a description of the sample sheet (optional).

	cells: one of rows or columns. If each row in the samplesheet is a sample, use rows, else use columns. Notice that singlet samplesheets have samples as rows.

	index: the name of the column/row of the samplesheet containing the sample names. This defaults to name (optional).

count_tables

	The count_tables section contains an arbitrary number of key value pairs and no lists. Each entry describes a counts table and has the following format:

	
	the key determines the id of the counts table: this id is used in the contstructor of Dataset.

	the value is a series of key value pairs, no lists.

	The following key value pairs are available:

	
	description: a description of the counts table (optional).

	path: a filename on disk containing the counts table, usually in CSV/TSV format.

	format: a file format of the counts table (optional). If missing, it is inferred from the path filename.

	cells: one of rows or columns. If each row in the counts table is a sample, use rows, else use columns.

	normalized: either yes or no. If data is not normalized, you can normalize it with singlet by using the CountsTable.normalize method.

	sparse: either yes or no (default). If yes, the count table will be loaded by default as CountsTableSparse, else as CountsTable (dense).

	spikeins: a YAML list of features that appear in the counts table and represent spike-in controls as opposed to real features. Spikeins can be excluded from the counts table using CountsTable.exclude_features.

	other: a YAML list of features that are neither biological features nor spike-in controls. This list typically includes ambiguous alignments, multiple-aligned reads, reads outside features, etc. Other features can be excluded from the counts table using CountsTable.exclude_features.

The first column/row of the counts table must be the list of samples.

featuresheets

	The featuresheets section contains an arbitrary number of key value pairs and no lists. Each entry describes a featuresheet, i.e. a table with metadata for the features. A typical usage of featuresheets is to connect feature ids (e.g. EnsemblGeneID) with human-readable names, Gene Ontology terms, species information, pathways, cellular localization, etc. Each entry has the following format:

	
	the key is the id of the featuresheet: this id is used in the constructor of Dataset.

	the value is a series of key value pairs, no lists.

	The following key value pairs are available:

	
	description: a description of the featuresheet (optional).

	path: a filename on disk containing the featuresheet, usually in CSV/TSV format.

	format: a file format of the featuresheet (optional). If missing, it is inferred from the path filename.

	features: one of rows or columns. If each feature in the featuresheet is a feature, use rows, otherwise use columns.

	index: the name of the column/row of the featuresheet containing the feature names. This defaults to name (optional).

datasets

	The datasets section contains an arbitrary number of key value pairs and no lists. Each entry describes an integrated dataset, i.e. a single file containing one or more of the three main data structures (CountsTable, Samplesheet, and Featuresheet). The most common use of integrated datasets is when all three data structures are present and they are embedded in a single file for portability purposes or lazy evaluation (the latter is not implemented yet). Each entry has the following format:

	
	the key is the id of the dataset: this id is used in the constructor of Dataset.

	the value is a series of key value pairs, no lists.

	The following key value pairs are available:

	
	description: a description of the dataset (optional).

	path: a filename on disk containing the integrated dataset, e.g. in LOOM format.

	format: a file format of the dataset (optional). If missing, it is inferred from the path filename.

	axis_samples: one of rows or columns. If every sample is a column in the count matrix, use columns, else use rows.

	index_samples: the name of the column/row of the dataset containing the sample names.

	index_features: the name of the column/row of the dataset containing the feature names.

API

Singlet analysis is centered around the Dataset class, which describes a set of samples (usually single cells). Each Dataset has three main properties:

	a CountsTable with the counts of genomic features, typically transcripts

	a SampleSheet with the sample metdata and phenotypic information.

	a FeatureSheet with the feature metdata, for instance alternative names and Gene Ontology terms.

At least one of the three properties must be present. In fact, you are perfectly free to set only the feature counts or even, although may be not so useful, only the sample metadata. Moreover, a Dataset has a number of “action properties” that perform operations on the data:

	Dataset.correlations: correlate feature expressions and phenotypes

	Dataset.feature_selection: select features based on expression patterns

	Dataset.dimensionality: reduce dimensionality of the data including phenotypes

	Dataset.cluster: cluster samples, features, and phenotypes

	Dataset.fit: fit (regress on) feature expression and metadata

	Dataset.plot: plot the results of various analyses

Supporting modules are useful for particular purposes or internal use only:

	config

	utils

	io

API reference

	singlet.dataset

	singlet.counts_table

	singlet.samplesheet

	singlet.featureshet

	singlet.dataset.cluster

	singlet.dataset.correlations

	singlet.dataset.dimensionality

	singlet.dataset.feature_selection

	singlet.dataset.fit

	singlet.dataset.plot

singlet.dataset

	
class singlet.dataset.Dataset(counts_table=None, samplesheet=None, featuresheet=None, dataset=None, plugins=None)

	Bases: object

Collection of cells, with feature counts and metadata

	
average(axis, column)

	Average samples or features based on metadata

	Parameters

	
	axis (string) – Must be ‘samples’ or ‘features’.

	column (string) – Must be a column of the samplesheet (for
axis=’samples’) or of the featuresheet (for axis=’features’).
Samples or features with a common value in this column are
averaged over.

	Returns

	A Dataset with the averaged counts.

Note: if you average over samples, you get an empty samplesheet.
Simlarly, if you average over features, you get an empty featuresheet.

	
bootstrap(groupby=None)

	Resample with replacement, aka bootstrap dataset

	Parameters

	
	groupby (str or list of str or None) – If None, bootstrap random

	disregarding sample metadata. If a string or a list of (samples) –

	boostrap over groups of samples with consistent (strings,) –

	for that/those columns. (entries) –

	Returns

	A Dataset with the resampled samples.

	
compare(other, features='mapped', phenotypes=(), method='kolmogorov-smirnov')

	Statistically compare with another Dataset.

	Parameters

	
	other (Dataset) – The Dataset to compare with.

	features (list, string, or None) – Features to compare. The string
‘total’ means all features including spikeins and other,
‘mapped’ means all features excluding spikeins and other,
‘spikeins’ means only spikeins, and ‘other’ means only
‘other’ features. If empty list or None, do not compare
features (useful for phenotypic comparison).

	phenotypes (list of strings) – Phenotypes to compare.

	method (string or function) – Statistical test to use for the
comparison. If a string it must be one of
‘kolmogorov-smirnov’ or ‘mann-whitney’. If a function, it
must accept two arrays as arguments (one for each
dataset, running over the samples) and return a P-value
for the comparison.

	Returns

	
	A pandas.DataFrame containing the P-values of the comparisons for

	all features and phenotypes.

	
copy()

	Copy of the Dataset

	
counts

	Matrix of gene expression counts.

Rows are features, columns are samples.

	Notice: If you reset this matrix with features that are not in the

	featuresheet or samples that are not in the samplesheet,
those tables will be reset to empty.

	
featuremetadatanames

	pandas.Index of feature metadata column names

	
featurenames

	pandas.Index of feature names

	
featuresheet

	Matrix of feature metadata.

Rows are features, columns are metadata (e.g. Gene Ontologies).

	
n_features

	Number of features

	
n_samples

	Number of samples

	
query_features_by_counts(expression, inplace=False, local_dict=None)

	Select features based on their expression.

	Parameters

	
	expression (string) – An expression compatible with
pandas.DataFrame.query.

	inplace (bool) – Whether to change the Dataset in place or return a
new one.

	local_dict (dict) – A dictionary of local variables, useful if you
are using @var assignments in your expression. By far the
most common usage of this argument is to set
local_dict=locals().

	Returns

	If inplace is True, None. Else, a Dataset.

	
query_features_by_metadata(expression, inplace=False, local_dict=None)

	Select features based on metadata.

	Parameters

	
	expression (string) – An expression compatible with
pandas.DataFrame.query.

	inplace (bool) – Whether to change the Dataset in place or return a
new one.

	local_dict (dict) – A dictionary of local variables, useful if you
are using @var assignments in your expression. By far the
most common usage of this argument is to set
local_dict=locals().

	Returns

	If inplace is True, None. Else, a Dataset.

	
query_features_by_name(featurenames, inplace=False, ignore_missing=False)

	Select features by name.

	Parameters

	
	featurenames – names of the features to keep.

	inplace (bool) – Whether to change the Dataset in place or return a
new one.

	ignore_missing (bool) – Whether to silently skip missing features.

	
query_samples_by_counts(expression, inplace=False, local_dict=None)

	Select samples based on gene expression.

	Parameters

	
	expression (string) – An expression compatible with
pandas.DataFrame.query.

	inplace (bool) – Whether to change the Dataset in place or return a
new one.

	local_dict (dict) – A dictionary of local variables, useful if you
are using @var assignments in your expression. By far the most
common usage of this argument is to set local_dict=locals().

	Returns

	If inplace is True, None. Else, a Dataset.

	
query_samples_by_metadata(expression, inplace=False, local_dict=None)

	Select samples based on metadata.

	Parameters

	
	expression (string) – An expression compatible with
pandas.DataFrame.query.

	inplace (bool) – Whether to change the Dataset in place or return a
new one.

	local_dict (dict) – A dictionary of local variables, useful if you
are using @var assignments in your expression. By far the
most common usage of this argument is to set
local_dict=locals().

	Returns

	If inplace is True, None. Else, a Dataset.

	
query_samples_by_name(samplenames, inplace=False, ignore_missing=False)

	Select samples by name.

	Parameters

	
	samplenames – names of the samples to keep.

	inplace (bool) – Whether to change the Dataset in place or return a
new one.

	ignore_missing (bool) – Whether to silently skip missing samples.

	
rename(axis, column, inplace=False)

	Rename samples or features

	Parameters

	
	axis (string) – Must be ‘samples’ or ‘features’.

	column (string) – Must be a column of the samplesheet (for
axis=’samples’) or of the featuresheet (for axis=’features’)
with unique names of samples or features.

	inplace (bool) – Whether to change the Dataset in place or return a
new one.

	
samplemetadatanames

	pandas.Index of sample metadata column names

	
samplenames

	pandas.Index of sample names

	
samplesheet

	Matrix of sample metadata.

Rows are samples, columns are metadata (e.g. phenotypes).

	
split(phenotypes, copy=True)

	Split Dataset based on one or more categorical phenotypes

	Parameters

	phenotypes (string or list of strings) – one or more phenotypes to
use for the split. Unique values of combinations of these
determine the split Datasets.

	Returns

	
	the keys are either unique values of the

	phenotype chosen or, if more than one, tuples of unique
combinations.

	Return type

	dict of Datasets

	
to_dataset_file(filename, fmt=None, **kwargs)

	Store dataset into an integrated dataset file

	Parameters

	
	filename (str) – path of the file to write to.

	fmt (str or None) – file format. If None, infer from the file

	extension. –

	**kwargs (keyword arguments) – depend on the format.

The additional keyword argument for the supported formats are:
- loom:

	axis_samples: rows or columns (default)

singlet.counts_table

author: Fabio Zanini
date: 26/10/18
content: Module for counts tables.

singlet.samplesheet

	
class singlet.samplesheet.SampleSheet(data=None, index=None, columns=None, dtype=None, copy=False)

	Bases: pandas.core.frame.DataFrame

	
classmethod from_datasetname(datasetname)

	

	
classmethod from_sheetname(sheetname)

	

singlet.featureshet

	
class singlet.featuresheet.FeatureSheet(data=None, index=None, columns=None, dtype=None, copy=False)

	Bases: pandas.core.frame.DataFrame

	
classmethod from_datasetname(datasetname)

	

	
classmethod from_sheetname(sheetname)

	

singlet.dataset.cluster

	
class singlet.dataset.cluster.Cluster(dataset)

	Bases: object

Cluster samples, features, and phenotypes

	
dbscan(axis, phenotypes=(), **kwargs)

	Density-Based Spatial Clustering of Applications with Noise.

	Parameters

	
	axis (string) – It must be ‘samples’ or ‘features’.
The Dataset.counts matrix is used and
either samples or features are clustered.

	phenotypes (iterable of strings) – Phenotypes to add to the
features for joint clustering.

	log_features (bool) – Whether to add pseudocounts and take a log
of the feature counts before calculating distances.

	**kwargs – arguments passed to sklearn.cluster.DBSCAN.

	Returns

	pd.Series with the labels of the clusters.

	
hierarchical(axis, phenotypes=(), metric='correlation', method='average', log_features=False, optimal_ordering=False)

	Hierarchical clustering.

	Parameters

	
	axis (string) – It must be ‘samples’ or ‘features’. The
Dataset.counts matrix is used and either samples or features
are clustered.

	phenotypes (iterable of strings) – Phenotypes to add to the
features for joint clustering.

	metric (string) – Metric to calculate the distance matrix. Should
be a string accepted by scipy.spatial.distance.pdist.

	method (string) – Clustering method. Must be a string accepted by
scipy.cluster.hierarchy.linkage.

	log_features (bool) – Whether to add pseudocounts and take a log
of the feature counts before calculating distances.

	optimal_ordering (bool) – Whether to resort the linkage so that
nearest neighbours have shortest distance. This may take
longer than the clustering itself.

	Returns

	dict with the linkage, distance matrix, and ordering.

	
kmeans(n_clusters, axis, phenotypes=(), random_state=0)

	K-Means clustering.

	Parameters

	
	n_clusters (int) – The number of clusters you want.

	axis (string) – It must be ‘samples’ or ‘features’.
The Dataset.counts matrix is used and
either samples or features are clustered.

	phenotypes (iterable of strings) – Phenotypes to add to the
features for joint clustering.

	log_features (bool) – Whether to add pseudocounts and take a log
of the feature counts before calculating distances.

	random_state (int) – Set to the same int for deterministic results.

	Returns

	pd.Series with the labels of the clusters.

singlet.dataset.correlations

	
class singlet.dataset.correlations.Correlation(dataset)

	Bases: object

Correlate gene expression and phenotype in single cells

	
correlate_features_features(features='all', features2=None, method='spearman')

	Correlate feature expression with one or more phenotypes.

	Parameters

	
	features (list or string) – list of features to correlate. Use a
string for a single feature. The special string ‘all’
(default) uses all features.

	features2 (list or string) – list of features to correlate with.
Use a string for a single feature. The special string
‘all’ uses all features. None (default) takes the same
list as features, returning a square matrix.

	method (string) – type of correlation. Must be one of ‘pearson’ or
‘spearman’.

	Returns

	
	pandas.DataFrame with the correlation coefficients. If either

	features or features2 is a single string, the function
returns a pandas.Series. If both are a string, it returns
a single correlation coefficient.

	
correlate_features_phenotypes(phenotypes, features='all', method='spearman', fillna=None)

	Correlate feature expression with one or more phenotypes.

	Parameters

	
	phenotypes (list of string) – list of phenotypes, i.e. columns of
the samplesheet. Use a string for a single phenotype.

	features (list or string) – list of features to correlate. Use a
string for a single feature. The special string ‘all’
(default) uses all features.

	method (string) – type of correlation. Must be one of ‘pearson’ or
‘spearman’.

	fillna (dict, int, or None) – a dictionary with phenotypes as keys
and numbers to fill for NaNs as values. None will do
nothing.

	Returns

	
	pandas.DataFrame with the correlation coefficients. If either

	phenotypes or features is a single string, the function
returns a pandas.Series. If both are a string, it returns
a single correlation coefficient.

	
correlate_phenotypes_phenotypes(phenotypes, phenotypes2=None, method='spearman', fillna=None, fillna2=None)

	Correlate feature expression with one or more phenotypes.

	Parameters

	
	phenotypes (list of string) – list of phenotypes, i.e. columns of
the samplesheet. Use a string for a single phenotype.

	phenotypes2 (list of string) – list of phenotypes, i.e. columns of
the samplesheet. Use a string for a single phenotype.
None (default) uses the same as phenotypes.

	method (string) – type of correlation. Must be one of ‘pearson’ or
‘spearman’.

	fillna (dict, int, or None) – a dictionary with phenotypes as keys
and numbers to fill for NaNs as values. None will do
nothing, potentially yielding NaN as correlation
coefficients.

	fillna2 (dict, int, or None) – as fillna, but for phenotypes2.

	Returns

	
	pandas.DataFrame with the correlation coefficients. If either

	phenotypes or features is a single string, the function
returns a pandas.Series. If both are a string, it returns
a single correlation coefficient.

	
correlate_samples(samples='all', samples2=None, phenotypes=None, method='spearman')

	Correlate feature expression with one or more phenotypes.

	Parameters

	
	samples (list or string) – list of samples to correlate. Use a
string for a single sample. The special string ‘all’
(default) uses all samples.

	samples2 (list or string) – list of samples to correlate with.
Use a string for a single sample. The special string
‘all’ uses all samples. None (default) takes the same
list as samples, returning a square matrix.

	method (string) – type of correlation. Must be one of ‘pearson’ or
‘spearman’.

	phenotypes (list) – phenotypes to include as additional features in
the correlation calculation. None (default) means only feature
counts are used.

	Returns

	
	pandas.DataFrame with the correlation coefficients. If either

	samples or samples2 is a single string, the function
returns a pandas.Series. If both are a string, it returns
a single correlation coefficient.

	
mutual_information(xs, ys)

	Mutual information between feature counts and/or phenotypes

	Parameters

	
	xs (list or string) – Features and/or phenotypes to use as
abscissa (independent variable). The string
‘total’ means all features including spikeins and other,
‘mapped’ means all features excluding spikeins and other,
‘spikeins’ means only spikeins, and ‘other’ means only
‘other’ features.

	ys (list or string) – Features and/or phenotypes to use as
ordinate (dependent variable). The string
‘total’ means all features including spikeins and other,
‘mapped’ means all features excluding spikeins and other,
‘spikeins’ means only spikeins, and ‘other’ means only
‘other’ features.

	NOTE: Mutual information is defined only for discrete or categorical

	variables and require a decent coverage of all bins or
categories because it has p(x)p(y) in the denominator.
Feature counts and quantitative phenotypes require binning
prior to calculating Mutual information. See CountsTable.bin
and SampleSheet.bin for options. This function uses
all unique values in the counts and phenotyes as separate
bins.

singlet.dataset.dimensionality

	
class singlet.dataset.dimensionality.DimensionalityReduction(dataset)

	Bases: object

Reduce dimensionality of gene expression and phenotype in single cells

	
pca(n_dims=2, transform='log10', robust=True, random_state=None)

	Principal component analysis

	Parameters

	
	n_dims (int) – Number of dimensions (2+).

	transform (string or None) – Whether to preprocess the data.

	robust (bool) – Whether to use Principal Component Pursuit to
exclude outliers.

	Returns

	
	dict of the left eigenvectors (vs), right eigenvectors (us)

	of the singular value decomposition, eigenvalues
(lambdas), the transform, and the whiten function (for
plotting).

	
tsne(n_dims=2, perplexity=30, theta=0.5, rand_seed=0, **kwargs)

	t-SNE algorithm.

	Parameters

	
	n_dims (int) – Number of dimensions to use.

	perplexity (float) – Perplexity of the algorithm.

	theta (float) – A number between 0 and 1. Higher is faster but
less accurate (via the Barnes-Hut approximation).

	rand_seed (int) – Random seed. -1 randomizes each run.

	**kwargs – Named arguments passed to the t-SNE algorithm.

Returns:

	
umap(n_dims=2, rand_seed=0, **kwargs)

	Uniform Manifold Approximation and Projection.

	Parameters

	
	n_dims (int) – Number of dimensions to use.

	rand_seed (int) – Random seed. -1 randomizes each run.

	**kwargs – Named arguments passed to umap.UMAP.

Returns:

singlet.dataset.feature_selection

	
class singlet.dataset.feature_selection.FeatureSelection(dataset)

	Bases: object

Plot gene expression and phenotype in single cells

	
expressed(n_samples, exp_min, inplace=False)

	Select features that are expressed in at least some samples.

	Parameters

	
	n_samples (int) – Minimum number of samples the features should be
expressed in.

	exp_min (float) – Minimum level of expression of the features.

	inplace (bool) – Whether to change the feature list in place.

	Returns

	pd.Index of selected features if not inplace, else None.

	
overdispersed_strata(bins=10, n_features_per_stratum=50, inplace=False)

	Select overdispersed features in strata of increasing expression.

	Parameters

	
	bins (int or list) – Bin edges determining the strata. If this is
a number, split the expression in this many equally spaced bins
between minimal and maximal expression.

	n_features_per_stratum (int) – Number of features per stratum to
select.

	Returns

	pd.Index of selected features if not inplace, else None.

Notice that the number of selected features may be smaller than
expected if some strata have no dispersion (e.g. only dropouts).
Because of this, it is recommended you restrict the counts to
expressed features before using this function.

	
sam(k=None, distance='correlation', *args, **kwargs)

	Calculate feature weights via self-assembling manifolds

	Parameters

	
	k (int or None) – The number of nearest neighbors for each sample

	distance (str) – The distance matrix

	**kwargs (*args,) – Arguments to SAM.run

	Returns

	SAM instance containing SAM.output_vars[‘gene_weights’]

See also: https://github.com/atarashansky/self-assembling-manifold

	
unique(inplace=False)

	Select features with unique ids

	Parameters

	inplace (bool) – Whether to change the feature list in place.

	Returns

	pd.Index of selected features if not inplace, else None.

singlet.dataset.fit

	
class singlet.dataset.fit.Fit(dataset)

	Bases: object

Fit gene expression and phenotype in single cells

	
fit_single(xs, ys, model, method='least-squares', handle_nans='ignore', **kwargs)

	Fit feature expression or phenotypes against other.

	Parameters

	
	xs (list or string) – Features and/or phenotypes to use as
abscissa (independent variable). The string
‘total’ means all features including spikeins and other,
‘mapped’ means all features excluding spikeins and other,
‘spikeins’ means only spikeins, and ‘other’ means only
‘other’ features.

	ys (list or string) – Features and/or phenotypes to use as
ordinate (dependent variable). The string
‘total’ means all features including spikeins and other,
‘mapped’ means all features excluding spikeins and other,
‘spikeins’ means only spikeins, and ‘other’ means only
‘other’ features.

	model (string or function) – The model to use for fitting. If a
string, it must be one of ‘linear’, ‘threshold-linear’,
‘logistic’. If a function, it must accept an array
as first argument (the x) and the parameters as
additional arguments (like scipy.optimize.curve_fit).

	method (string or function) – The minimization algorithm. For now,
only ‘least-squares’ is accepted. In this case, the
goodness of fit is the sum of the squared residues.

	handle_nans (string) – How to deal with Not a Numbers, typically
in the phenotypes. Must be either ‘ignore’ (default), in
which case only the non-NaN samples will be used for
fitting, or ‘raise’, in which case NaNs will stop the fit.

	**kwargs – Passed to the fit function. For nonlinear
least-squares, this is scipy.optimize.curve_fit. Linear
least-squares is analytical so it ignores **kwargs.

	Returns

	A 3-dimensional xarray with the xs, ys as first two axes. The
third axis, called ‘results’, contains the parameters
and an assessment of the fit quality. If method is
least-squres, it is the sum of squared residuals.

	NOTE: This function fits every combination of x and y independently,

	interactions are not considered.

singlet.dataset.plot

	
class singlet.dataset.plot.Plot(dataset)

	Bases: object

Plot gene expression and phenotype in single cells

	
clustermap(cluster_samples=False, cluster_features=False, phenotypes_cluster_samples=(), phenotypes_cluster_features=(), annotate_samples=False, annotate_features=False, labels_samples=True, labels_features=True, orientation='horizontal', colorbars=False, **kwargs)

	Samples versus features / phenotypes.

	Parameters

	
	cluster_samples (bool or linkage) – Whether to cluster samples and show the dendrogram. Can be either, False, True, or a linkage from scipy.cluster.hierarchy.linkage.

	cluster_features (bool or linkage) – Whether to cluster features and show the dendrogram. Can be either, False, True, or a linkage from scipy.cluster.hierarchy.linkage.

	phenotypes_cluster_samples (iterable of strings) – Phenotypes to add to the features for joint clustering of the samples. If the clustering has been precomputed including phenotypes and the linkage matrix is explicitely set as cluster_samples, the same phenotypes must be specified here, in the same order.

	phenotypes_cluster_features (iterable of strings) – Phenotypes to add to the features for joint clustering of the features and phenotypes. If the clustering has been precomputed including phenotypes and the linkage matrix is explicitely set as cluster_features, the same phenotypes must be specified here, in the same order.

	annotate_samples (dict, or False) – Whether and how to annotate the samples with separate colorbars. The dictionary must have phenotypes or features as keys. For qualitative phenotypes, the values can be palette names or palettes (with at least as many colors as there are categories). For quantitative phenotypes and features, they can be colormap names or colormaps.

	annotate_features (dict, or False) – Whether and how to annotate the featues with separate colorbars. The dictionary must have features metadata as keys. For qualitative annotations, the values can be palette names or palettes (with at least as many colors as there are categories). For quantitative annotatoins, the values can be colormap names or colormaps. Keys must be columns of the Dataset.featuresheet, except for the key ‘mean expression’ which is interpreted to mean the average of the counts for that feature.

	labels_samples (bool) – Whether to show the sample labels. If you have hundreds or more samples, you may want to turn this off to make the plot tidier.

	labels_features (bool) – Whether to show the feature labels. If you have hundreds or more features, you may want to turn this off to make the plot tidier.

	orientation (string) – Whether the samples are on the abscissa (‘horizontal’) or on the ordinate (‘vertical’).

	tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at the end of the plotting. If it is a dict, pass it unpacked to that function.

	colorbars (bool) – Whether to add colorbars. One colorbar refers to the heatmap. Moreover, if annotations for samples or features are shown, a colorbar for each of them will be shown as well.

	**kwargs – named arguments passed to seaborn.clustermap.

	Returns

	A seaborn ClusterGrid instance.

	
gate_features_from_statistics(features='mapped', x='mean', y='cv', **kwargs)

	Select features for downstream analysis with a gate.

Usage: Click with the left mouse button to set the vertices of a polygon. Double left-click closes the shape. Right click resets the plot.

	Parameters

	
	features (list or string) – List of features to plot. The string ‘mapped’ means everything excluding spikeins and other, ‘all’ means everything including spikeins and other.

	x (string) – Statistics to plot on the x axis.

	y (string) – Statistics to plot on the y axis.

	**kwargs – named arguments passed to the plot function.

	Returns

	pd.Index of features within the gate.

	
plot_coverage(features='total', kind='cumulative', ax=None, tight_layout=True, legend=False, **kwargs)

	Plot number of reads for each sample

	Parameters

	
	features (list or string) – Features to sum over. The string ‘total’ means all features including spikeins and other, ‘mapped’ means all features excluding spikeins and other, ‘spikeins’ means only spikeins, and ‘other’ means only ‘other’ features.

	kind (string) – Kind of plot (default: cumulative distribution).

	ax (matplotlib.axes.Axes) – The axes to plot into. If None (default), a new figure with one axes is created. ax must not strictly be a matplotlib class, but it must have common methods such as ‘plot’ and ‘set’.

	tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at the end of the plotting. If it is a dict, pass it unpacked to that function.

	legend (bool or dict) – If True, call ax.legend(). If a dict, pass as **kwargs to ax.legend.

	**kwargs – named arguments passed to the plot function.

	Returns

	matplotlib.axes.Axes with the axes contaiing the plot.

	
plot_distributions(features, kind='violin', ax=None, tight_layout=True, legend=False, orientation='vertical', sort=False, bottom=0, grid=None, **kwargs)

	Plot distribution of spike-in controls

	Parameters

	
	features (list or string) – List of features to plot. If it is the string ‘spikeins’, plot all spikeins, if the string ‘other’, plot other features.

	kind (string) – Kind of plot, one of ‘violin’ (default), ‘box’, ‘swarm’.

	ax (matplotlib.axes.Axes) – Axes to plot into. If None (default), create a new figure and axes.

	tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at the end of the plotting. If it is a dict, pass it unpacked to that function.

	legend (bool or dict) – If True, call ax.legend(). If a dict, pass as **kwargs to ax.legend.

	orientation (string) – ‘horizontal’ or ‘vertical’.

	sort (bool or string) – True or ‘ascending’ sorts the features by median, ‘descending’ uses the reverse order.

	bottom (float or string) – The value of zero-count features. If you are using a log axis, you may want to set this to 0.1 or any other small positive number. If a string, it must be ‘pseudocount’, then the CountsTable.pseudocount will be used.

	grid (bool or None) – Whether to add a grid to the plot. None defaults to your existing settings.

	**kwargs – named arguments passed to the plot function.

	Returns

	The axes with the plot.

	Return type

	matplotlib.axes.Axes

	
scatter_reduced_samples(vectors_reduced, color_by=None, color_log=None, cmap='viridis', ax=None, tight_layout=True, **kwargs)

	Scatter samples after dimensionality reduction.

	Parameters

	
	vectors_reduced (pandas.Dataframe) – matrix of coordinates of the samples after dimensionality reduction. Rows are samples, columns (typically 2 or 3) are the component in the low-dimensional embedding.

	color_by (string or None) – color sample dots by phenotype or expression of a certain feature.

	color_log (bool or None) – use log of phenotype/expression in the colormap. Default None only logs expression, but not phenotypes.

	cmap (string or matplotlib colormap) – color map to use for the sample dots.

	ax (matplotlib.axes.Axes) – The axes to plot into. If None (default), a new figure with one axes is created. ax must not strictly be a matplotlib class, but it must have common methods such as ‘plot’ and ‘set’.

	tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at the end of the plotting. If it is a dict, pass it unpacked to that function.

	**kwargs – named arguments passed to the plot function.

	Returns

	matplotlib.axes.Axes with the axes containing the plot.

	
scatter_statistics(features='mapped', x='mean', y='cv', ax=None, tight_layout=True, legend=False, grid=None, **kwargs)

	Scatter plot statistics of features.

	Parameters

	
	features (list or string) – List of features to plot. The string ‘mapped’ means everything excluding spikeins and other, ‘all’ means everything including spikeins and other.

	x (string) – Statistics to plot on the x axis.

	y (string) – Statistics to plot on the y axis.

	ax (matplotlib.axes.Axes) – The axes to plot into. If None (default), a new figure with one axes is created. ax must not strictly be a matplotlib class, but it must have common methods such as ‘plot’ and ‘set’.

	tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at the end of the plotting. If it is a dict, pass it unpacked to that function.

	legend (bool or dict) – If True, call ax.legend(). If a dict, pass as **kwargs to ax.legend.

	grid (bool or None) – Whether to add a grid to the plot. None defaults to your existing settings.

	**kwargs – named arguments passed to the plot function.

	Returns

	matplotlib.axes.Axes with the axes contaiing the plot.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 singlet	

 	
 	
 singlet.counts_table	

 	
 	
 singlet.dataset	

 	
 	
 singlet.dataset.cluster	

 	
 	
 singlet.dataset.correlations	

 	
 	
 singlet.dataset.dimensionality	

 	
 	
 singlet.dataset.feature_selection	

 	
 	
 singlet.dataset.fit	

 	
 	
 singlet.dataset.plot	

 	
 	
 singlet.featuresheet	

 	
 	
 singlet.io	

 	
 	
 singlet.io.csv	

 	
 	
 singlet.io.googleapi	

 	
 	
 singlet.io.googleapi.googleapi	

 	
 	
 singlet.io.googleapi.samplesheet	

 	
 	
 singlet.samplesheet	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | K
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U

A

 	
 	add_sheet() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	
 	application_name (singlet.io.googleapi.googleapi.GoogleAPI attribute)

 	average() (singlet.dataset.Dataset method), [1]

B

 	
 	bootstrap() (singlet.dataset.Dataset method), [1]

C

 	
 	Cluster (class in singlet.dataset.cluster)

 	clustermap() (singlet.dataset.plot.Plot method), [1]

 	compare() (singlet.dataset.Dataset method), [1]

 	convert_A24_to_row_col() (singlet.io.googleapi.googleapi.GoogleAPI static method)

 	convert_range_json_to_A1() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	convert_row_col_to_A1() (singlet.io.googleapi.googleapi.GoogleAPI class method)

 	convert_row_col_to_A24() (singlet.io.googleapi.googleapi.GoogleAPI static method)

 	
 	copy() (singlet.dataset.Dataset method), [1]

 	correlate_features_features() (singlet.dataset.correlations.Correlation method), [1]

 	correlate_features_phenotypes() (singlet.dataset.correlations.Correlation method), [1]

 	correlate_phenotypes_phenotypes() (singlet.dataset.correlations.Correlation method), [1]

 	correlate_samples() (singlet.dataset.correlations.Correlation method), [1]

 	Correlation (class in singlet.dataset.correlations), [1]

 	counts (singlet.dataset.Dataset attribute), [1]

D

 	
 	Dataset (class in singlet.dataset), [1]

 	dbscan() (singlet.dataset.cluster.Cluster method)

 	
 	delete_sheet() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	DimensionalityReduction (class in singlet.dataset.dimensionality), [1]

E

 	
 	expressed() (singlet.dataset.feature_selection.FeatureSelection method)

F

 	
 	featuremetadatanames (singlet.dataset.Dataset attribute), [1]

 	featurenames (singlet.dataset.Dataset attribute), [1]

 	FeatureSelection (class in singlet.dataset.feature_selection)

 	FeatureSheet (class in singlet.featuresheet)

 	featuresheet (singlet.dataset.Dataset attribute), [1]

 	
 	Fit (class in singlet.dataset.fit)

 	fit_single() (singlet.dataset.fit.Fit method)

 	from_datasetname() (singlet.featuresheet.FeatureSheet class method)

 	(singlet.samplesheet.SampleSheet class method)

 	from_sheetname() (singlet.featuresheet.FeatureSheet class method)

 	(singlet.samplesheet.SampleSheet class method)

G

 	
 	gate_features_from_statistics() (singlet.dataset.plot.Plot method), [1]

 	get_backgrounds() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	get_cell_property() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	get_credentials() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	get_data() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	get_header_columns_indices() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	get_last_column() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	get_named_ranges() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	
 	get_number_virus_reads() (singlet.io.googleapi.samplesheet.SampleSheet method)

 	get_sheet_id() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	get_sheet_shape() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	get_sheetnames() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	get_table() (singlet.io.googleapi.samplesheet.SampleSheet method)

 	get_text_format() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	GoogleAPI (class in singlet.io.googleapi.googleapi)

 	GoogleIOError

H

 	
 	hex_to_rgb() (singlet.io.googleapi.googleapi.GoogleAPI static method)

 	
 	hierarchical() (singlet.dataset.cluster.Cluster method)

K

 	
 	kmeans() (singlet.dataset.cluster.Cluster method)

M

 	
 	MAX_COLUMN (singlet.io.googleapi.googleapi.GoogleAPI attribute)

 	
 	mutual_information() (singlet.dataset.correlations.Correlation method), [1]

N

 	
 	n_features (singlet.dataset.Dataset attribute), [1]

 	
 	n_samples (singlet.dataset.Dataset attribute), [1]

O

 	
 	overdispersed_strata() (singlet.dataset.feature_selection.FeatureSelection method)

P

 	
 	parse_counts_table() (in module singlet.io)

 	(in module singlet.io.csv)

 	parse_counts_table_sparse() (in module singlet.io)

 	parse_dataset() (in module singlet.io)

 	parse_featuresheet() (in module singlet.io)

 	(in module singlet.io.csv)

 	
 	parse_samplesheet() (in module singlet.io)

 	(in module singlet.io.csv)

 	(in module singlet.io.googleapi)

 	pca() (singlet.dataset.dimensionality.DimensionalityReduction method), [1]

 	Plot (class in singlet.dataset.plot), [1]

 	plot_coverage() (singlet.dataset.plot.Plot method), [1]

 	plot_distributions() (singlet.dataset.plot.Plot method), [1]

Q

 	
 	query_features_by_counts() (singlet.dataset.Dataset method), [1]

 	query_features_by_metadata() (singlet.dataset.Dataset method), [1]

 	query_features_by_name() (singlet.dataset.Dataset method), [1]

 	
 	query_samples_by_counts() (singlet.dataset.Dataset method), [1]

 	query_samples_by_metadata() (singlet.dataset.Dataset method), [1]

 	query_samples_by_name() (singlet.dataset.Dataset method), [1]

R

 	
 	rename() (singlet.dataset.Dataset method), [1]

 	
 	rgb_to_hex() (singlet.io.googleapi.googleapi.GoogleAPI static method)

S

 	
 	sam() (singlet.dataset.feature_selection.FeatureSelection method)

 	samplemetadatanames (singlet.dataset.Dataset attribute), [1]

 	samplenames (singlet.dataset.Dataset attribute), [1]

 	SampleSheet (class in singlet.io.googleapi.samplesheet)

 	(class in singlet.samplesheet)

 	samplesheet (singlet.dataset.Dataset attribute), [1]

 	scatter_reduced_samples() (singlet.dataset.plot.Plot method), [1]

 	scatter_statistics() (singlet.dataset.plot.Plot method), [1]

 	scopes (singlet.io.googleapi.googleapi.GoogleAPI attribute)

 	set_backgrounds() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	set_cell_property() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	set_dimension_size() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	set_service() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	set_sheet() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	set_text_format() (singlet.io.googleapi.googleapi.GoogleAPI method)

 	
 	singlet.counts_table (module)

 	singlet.dataset (module), [1]

 	singlet.dataset.cluster (module)

 	singlet.dataset.correlations (module), [1]

 	singlet.dataset.dimensionality (module), [1]

 	singlet.dataset.feature_selection (module)

 	singlet.dataset.fit (module)

 	singlet.dataset.plot (module), [1]

 	singlet.featuresheet (module)

 	singlet.io (module)

 	singlet.io.csv (module)

 	singlet.io.googleapi (module)

 	singlet.io.googleapi.googleapi (module)

 	singlet.io.googleapi.samplesheet (module)

 	singlet.samplesheet (module)

 	split() (singlet.dataset.Dataset method), [1]

T

 	
 	to_dataset_file() (singlet.dataset.Dataset method), [1]

 	
 	tsne() (singlet.dataset.dimensionality.DimensionalityReduction method), [1]

U

 	
 	umap() (singlet.dataset.dimensionality.DimensionalityReduction method), [1]

 	
 	unique() (singlet.dataset.feature_selection.FeatureSelection method)

 	update_tsv_table() (singlet.io.googleapi.samplesheet.SampleSheet method)

singlet.dataset package

Module contents

	
class singlet.dataset.Dataset(counts_table=None, samplesheet=None, featuresheet=None, dataset=None, plugins=None)

	Bases: object

Collection of cells, with feature counts and metadata

	
average(axis, column)

	Average samples or features based on metadata

	Parameters

	
	axis (string) – Must be ‘samples’ or ‘features’.

	column (string) – Must be a column of the samplesheet (for
axis=’samples’) or of the featuresheet (for axis=’features’).
Samples or features with a common value in this column are
averaged over.

	Returns

	A Dataset with the averaged counts.

Note: if you average over samples, you get an empty samplesheet.
Simlarly, if you average over features, you get an empty featuresheet.

	
bootstrap(groupby=None)

	Resample with replacement, aka bootstrap dataset

	Parameters

	
	groupby (str or list of str or None) – If None, bootstrap random

	disregarding sample metadata. If a string or a list of (samples) –

	boostrap over groups of samples with consistent (strings,) –

	for that/those columns. (entries) –

	Returns

	A Dataset with the resampled samples.

	
compare(other, features='mapped', phenotypes=(), method='kolmogorov-smirnov')

	Statistically compare with another Dataset.

	Parameters

	
	other (Dataset) – The Dataset to compare with.

	features (list, string, or None) – Features to compare. The string
‘total’ means all features including spikeins and other,
‘mapped’ means all features excluding spikeins and other,
‘spikeins’ means only spikeins, and ‘other’ means only
‘other’ features. If empty list or None, do not compare
features (useful for phenotypic comparison).

	phenotypes (list of strings) – Phenotypes to compare.

	method (string or function) – Statistical test to use for the
comparison. If a string it must be one of
‘kolmogorov-smirnov’ or ‘mann-whitney’. If a function, it
must accept two arrays as arguments (one for each
dataset, running over the samples) and return a P-value
for the comparison.

	Returns

	
	A pandas.DataFrame containing the P-values of the comparisons for

	all features and phenotypes.

	
copy()

	Copy of the Dataset

	
counts

	Matrix of gene expression counts.

Rows are features, columns are samples.

	Notice: If you reset this matrix with features that are not in the

	featuresheet or samples that are not in the samplesheet,
those tables will be reset to empty.

	
featuremetadatanames

	pandas.Index of feature metadata column names

	
featurenames

	pandas.Index of feature names

	
featuresheet

	Matrix of feature metadata.

Rows are features, columns are metadata (e.g. Gene Ontologies).

	
n_features

	Number of features

	
n_samples

	Number of samples

	
query_features_by_counts(expression, inplace=False, local_dict=None)

	Select features based on their expression.

	Parameters

	
	expression (string) – An expression compatible with
pandas.DataFrame.query.

	inplace (bool) – Whether to change the Dataset in place or return a
new one.

	local_dict (dict) – A dictionary of local variables, useful if you
are using @var assignments in your expression. By far the
most common usage of this argument is to set
local_dict=locals().

	Returns

	If inplace is True, None. Else, a Dataset.

	
query_features_by_metadata(expression, inplace=False, local_dict=None)

	Select features based on metadata.

	Parameters

	
	expression (string) – An expression compatible with
pandas.DataFrame.query.

	inplace (bool) – Whether to change the Dataset in place or return a
new one.

	local_dict (dict) – A dictionary of local variables, useful if you
are using @var assignments in your expression. By far the
most common usage of this argument is to set
local_dict=locals().

	Returns

	If inplace is True, None. Else, a Dataset.

	
query_features_by_name(featurenames, inplace=False, ignore_missing=False)

	Select features by name.

	Parameters

	
	featurenames – names of the features to keep.

	inplace (bool) – Whether to change the Dataset in place or return a
new one.

	ignore_missing (bool) – Whether to silently skip missing features.

	
query_samples_by_counts(expression, inplace=False, local_dict=None)

	Select samples based on gene expression.

	Parameters

	
	expression (string) – An expression compatible with
pandas.DataFrame.query.

	inplace (bool) – Whether to change the Dataset in place or return a
new one.

	local_dict (dict) – A dictionary of local variables, useful if you
are using @var assignments in your expression. By far the most
common usage of this argument is to set local_dict=locals().

	Returns

	If inplace is True, None. Else, a Dataset.

	
query_samples_by_metadata(expression, inplace=False, local_dict=None)

	Select samples based on metadata.

	Parameters

	
	expression (string) – An expression compatible with
pandas.DataFrame.query.

	inplace (bool) – Whether to change the Dataset in place or return a
new one.

	local_dict (dict) – A dictionary of local variables, useful if you
are using @var assignments in your expression. By far the
most common usage of this argument is to set
local_dict=locals().

	Returns

	If inplace is True, None. Else, a Dataset.

	
query_samples_by_name(samplenames, inplace=False, ignore_missing=False)

	Select samples by name.

	Parameters

	
	samplenames – names of the samples to keep.

	inplace (bool) – Whether to change the Dataset in place or return a
new one.

	ignore_missing (bool) – Whether to silently skip missing samples.

	
rename(axis, column, inplace=False)

	Rename samples or features

	Parameters

	
	axis (string) – Must be ‘samples’ or ‘features’.

	column (string) – Must be a column of the samplesheet (for
axis=’samples’) or of the featuresheet (for axis=’features’)
with unique names of samples or features.

	inplace (bool) – Whether to change the Dataset in place or return a
new one.

	
samplemetadatanames

	pandas.Index of sample metadata column names

	
samplenames

	pandas.Index of sample names

	
samplesheet

	Matrix of sample metadata.

Rows are samples, columns are metadata (e.g. phenotypes).

	
split(phenotypes, copy=True)

	Split Dataset based on one or more categorical phenotypes

	Parameters

	phenotypes (string or list of strings) – one or more phenotypes to
use for the split. Unique values of combinations of these
determine the split Datasets.

	Returns

	
	the keys are either unique values of the

	phenotype chosen or, if more than one, tuples of unique
combinations.

	Return type

	dict of Datasets

	
to_dataset_file(filename, fmt=None, **kwargs)

	Store dataset into an integrated dataset file

	Parameters

	
	filename (str) – path of the file to write to.

	fmt (str or None) – file format. If None, infer from the file

	extension. –

	**kwargs (keyword arguments) – depend on the format.

The additional keyword argument for the supported formats are:
- loom:

	axis_samples: rows or columns (default)

Submodules

singlet.dataset.correlations module

	
class singlet.dataset.correlations.Correlation(dataset)

	Bases: object

Correlate gene expression and phenotype in single cells

	
correlate_features_features(features='all', features2=None, method='spearman')

	Correlate feature expression with one or more phenotypes.

	Parameters

	
	features (list or string) – list of features to correlate. Use a
string for a single feature. The special string ‘all’
(default) uses all features.

	features2 (list or string) – list of features to correlate with.
Use a string for a single feature. The special string
‘all’ uses all features. None (default) takes the same
list as features, returning a square matrix.

	method (string) – type of correlation. Must be one of ‘pearson’ or
‘spearman’.

	Returns

	
	pandas.DataFrame with the correlation coefficients. If either

	features or features2 is a single string, the function
returns a pandas.Series. If both are a string, it returns
a single correlation coefficient.

	
correlate_features_phenotypes(phenotypes, features='all', method='spearman', fillna=None)

	Correlate feature expression with one or more phenotypes.

	Parameters

	
	phenotypes (list of string) – list of phenotypes, i.e. columns of
the samplesheet. Use a string for a single phenotype.

	features (list or string) – list of features to correlate. Use a
string for a single feature. The special string ‘all’
(default) uses all features.

	method (string) – type of correlation. Must be one of ‘pearson’ or
‘spearman’.

	fillna (dict, int, or None) – a dictionary with phenotypes as keys
and numbers to fill for NaNs as values. None will do
nothing.

	Returns

	
	pandas.DataFrame with the correlation coefficients. If either

	phenotypes or features is a single string, the function
returns a pandas.Series. If both are a string, it returns
a single correlation coefficient.

	
correlate_phenotypes_phenotypes(phenotypes, phenotypes2=None, method='spearman', fillna=None, fillna2=None)

	Correlate feature expression with one or more phenotypes.

	Parameters

	
	phenotypes (list of string) – list of phenotypes, i.e. columns of
the samplesheet. Use a string for a single phenotype.

	phenotypes2 (list of string) – list of phenotypes, i.e. columns of
the samplesheet. Use a string for a single phenotype.
None (default) uses the same as phenotypes.

	method (string) – type of correlation. Must be one of ‘pearson’ or
‘spearman’.

	fillna (dict, int, or None) – a dictionary with phenotypes as keys
and numbers to fill for NaNs as values. None will do
nothing, potentially yielding NaN as correlation
coefficients.

	fillna2 (dict, int, or None) – as fillna, but for phenotypes2.

	Returns

	
	pandas.DataFrame with the correlation coefficients. If either

	phenotypes or features is a single string, the function
returns a pandas.Series. If both are a string, it returns
a single correlation coefficient.

	
correlate_samples(samples='all', samples2=None, phenotypes=None, method='spearman')

	Correlate feature expression with one or more phenotypes.

	Parameters

	
	samples (list or string) – list of samples to correlate. Use a
string for a single sample. The special string ‘all’
(default) uses all samples.

	samples2 (list or string) – list of samples to correlate with.
Use a string for a single sample. The special string
‘all’ uses all samples. None (default) takes the same
list as samples, returning a square matrix.

	method (string) – type of correlation. Must be one of ‘pearson’ or
‘spearman’.

	phenotypes (list) – phenotypes to include as additional features in
the correlation calculation. None (default) means only feature
counts are used.

	Returns

	
	pandas.DataFrame with the correlation coefficients. If either

	samples or samples2 is a single string, the function
returns a pandas.Series. If both are a string, it returns
a single correlation coefficient.

	
mutual_information(xs, ys)

	Mutual information between feature counts and/or phenotypes

	Parameters

	
	xs (list or string) – Features and/or phenotypes to use as
abscissa (independent variable). The string
‘total’ means all features including spikeins and other,
‘mapped’ means all features excluding spikeins and other,
‘spikeins’ means only spikeins, and ‘other’ means only
‘other’ features.

	ys (list or string) – Features and/or phenotypes to use as
ordinate (dependent variable). The string
‘total’ means all features including spikeins and other,
‘mapped’ means all features excluding spikeins and other,
‘spikeins’ means only spikeins, and ‘other’ means only
‘other’ features.

	NOTE: Mutual information is defined only for discrete or categorical

	variables and require a decent coverage of all bins or
categories because it has p(x)p(y) in the denominator.
Feature counts and quantitative phenotypes require binning
prior to calculating Mutual information. See CountsTable.bin
and SampleSheet.bin for options. This function uses
all unique values in the counts and phenotyes as separate
bins.

singlet.dataset.plot module

	
class singlet.dataset.plot.Plot(dataset)

	Bases: object

Plot gene expression and phenotype in single cells

	
clustermap(cluster_samples=False, cluster_features=False, phenotypes_cluster_samples=(), phenotypes_cluster_features=(), annotate_samples=False, annotate_features=False, labels_samples=True, labels_features=True, orientation='horizontal', colorbars=False, **kwargs)

	Samples versus features / phenotypes.

	Parameters

	
	cluster_samples (bool or linkage) – Whether to cluster samples and show the dendrogram. Can be either, False, True, or a linkage from scipy.cluster.hierarchy.linkage.

	cluster_features (bool or linkage) – Whether to cluster features and show the dendrogram. Can be either, False, True, or a linkage from scipy.cluster.hierarchy.linkage.

	phenotypes_cluster_samples (iterable of strings) – Phenotypes to add to the features for joint clustering of the samples. If the clustering has been precomputed including phenotypes and the linkage matrix is explicitely set as cluster_samples, the same phenotypes must be specified here, in the same order.

	phenotypes_cluster_features (iterable of strings) – Phenotypes to add to the features for joint clustering of the features and phenotypes. If the clustering has been precomputed including phenotypes and the linkage matrix is explicitely set as cluster_features, the same phenotypes must be specified here, in the same order.

	annotate_samples (dict, or False) – Whether and how to annotate the samples with separate colorbars. The dictionary must have phenotypes or features as keys. For qualitative phenotypes, the values can be palette names or palettes (with at least as many colors as there are categories). For quantitative phenotypes and features, they can be colormap names or colormaps.

	annotate_features (dict, or False) – Whether and how to annotate the featues with separate colorbars. The dictionary must have features metadata as keys. For qualitative annotations, the values can be palette names or palettes (with at least as many colors as there are categories). For quantitative annotatoins, the values can be colormap names or colormaps. Keys must be columns of the Dataset.featuresheet, except for the key ‘mean expression’ which is interpreted to mean the average of the counts for that feature.

	labels_samples (bool) – Whether to show the sample labels. If you have hundreds or more samples, you may want to turn this off to make the plot tidier.

	labels_features (bool) – Whether to show the feature labels. If you have hundreds or more features, you may want to turn this off to make the plot tidier.

	orientation (string) – Whether the samples are on the abscissa (‘horizontal’) or on the ordinate (‘vertical’).

	tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at the end of the plotting. If it is a dict, pass it unpacked to that function.

	colorbars (bool) – Whether to add colorbars. One colorbar refers to the heatmap. Moreover, if annotations for samples or features are shown, a colorbar for each of them will be shown as well.

	**kwargs – named arguments passed to seaborn.clustermap.

	Returns

	A seaborn ClusterGrid instance.

	
gate_features_from_statistics(features='mapped', x='mean', y='cv', **kwargs)

	Select features for downstream analysis with a gate.

Usage: Click with the left mouse button to set the vertices of a polygon. Double left-click closes the shape. Right click resets the plot.

	Parameters

	
	features (list or string) – List of features to plot. The string ‘mapped’ means everything excluding spikeins and other, ‘all’ means everything including spikeins and other.

	x (string) – Statistics to plot on the x axis.

	y (string) – Statistics to plot on the y axis.

	**kwargs – named arguments passed to the plot function.

	Returns

	pd.Index of features within the gate.

	
plot_coverage(features='total', kind='cumulative', ax=None, tight_layout=True, legend=False, **kwargs)

	Plot number of reads for each sample

	Parameters

	
	features (list or string) – Features to sum over. The string ‘total’ means all features including spikeins and other, ‘mapped’ means all features excluding spikeins and other, ‘spikeins’ means only spikeins, and ‘other’ means only ‘other’ features.

	kind (string) – Kind of plot (default: cumulative distribution).

	ax (matplotlib.axes.Axes) – The axes to plot into. If None (default), a new figure with one axes is created. ax must not strictly be a matplotlib class, but it must have common methods such as ‘plot’ and ‘set’.

	tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at the end of the plotting. If it is a dict, pass it unpacked to that function.

	legend (bool or dict) – If True, call ax.legend(). If a dict, pass as **kwargs to ax.legend.

	**kwargs – named arguments passed to the plot function.

	Returns

	matplotlib.axes.Axes with the axes contaiing the plot.

	
plot_distributions(features, kind='violin', ax=None, tight_layout=True, legend=False, orientation='vertical', sort=False, bottom=0, grid=None, **kwargs)

	Plot distribution of spike-in controls

	Parameters

	
	features (list or string) – List of features to plot. If it is the string ‘spikeins’, plot all spikeins, if the string ‘other’, plot other features.

	kind (string) – Kind of plot, one of ‘violin’ (default), ‘box’, ‘swarm’.

	ax (matplotlib.axes.Axes) – Axes to plot into. If None (default), create a new figure and axes.

	tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at the end of the plotting. If it is a dict, pass it unpacked to that function.

	legend (bool or dict) – If True, call ax.legend(). If a dict, pass as **kwargs to ax.legend.

	orientation (string) – ‘horizontal’ or ‘vertical’.

	sort (bool or string) – True or ‘ascending’ sorts the features by median, ‘descending’ uses the reverse order.

	bottom (float or string) – The value of zero-count features. If you are using a log axis, you may want to set this to 0.1 or any other small positive number. If a string, it must be ‘pseudocount’, then the CountsTable.pseudocount will be used.

	grid (bool or None) – Whether to add a grid to the plot. None defaults to your existing settings.

	**kwargs – named arguments passed to the plot function.

	Returns

	The axes with the plot.

	Return type

	matplotlib.axes.Axes

	
scatter_reduced_samples(vectors_reduced, color_by=None, color_log=None, cmap='viridis', ax=None, tight_layout=True, **kwargs)

	Scatter samples after dimensionality reduction.

	Parameters

	
	vectors_reduced (pandas.Dataframe) – matrix of coordinates of the samples after dimensionality reduction. Rows are samples, columns (typically 2 or 3) are the component in the low-dimensional embedding.

	color_by (string or None) – color sample dots by phenotype or expression of a certain feature.

	color_log (bool or None) – use log of phenotype/expression in the colormap. Default None only logs expression, but not phenotypes.

	cmap (string or matplotlib colormap) – color map to use for the sample dots.

	ax (matplotlib.axes.Axes) – The axes to plot into. If None (default), a new figure with one axes is created. ax must not strictly be a matplotlib class, but it must have common methods such as ‘plot’ and ‘set’.

	tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at the end of the plotting. If it is a dict, pass it unpacked to that function.

	**kwargs – named arguments passed to the plot function.

	Returns

	matplotlib.axes.Axes with the axes containing the plot.

	
scatter_statistics(features='mapped', x='mean', y='cv', ax=None, tight_layout=True, legend=False, grid=None, **kwargs)

	Scatter plot statistics of features.

	Parameters

	
	features (list or string) – List of features to plot. The string ‘mapped’ means everything excluding spikeins and other, ‘all’ means everything including spikeins and other.

	x (string) – Statistics to plot on the x axis.

	y (string) – Statistics to plot on the y axis.

	ax (matplotlib.axes.Axes) – The axes to plot into. If None (default), a new figure with one axes is created. ax must not strictly be a matplotlib class, but it must have common methods such as ‘plot’ and ‘set’.

	tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at the end of the plotting. If it is a dict, pass it unpacked to that function.

	legend (bool or dict) – If True, call ax.legend(). If a dict, pass as **kwargs to ax.legend.

	grid (bool or None) – Whether to add a grid to the plot. None defaults to your existing settings.

	**kwargs – named arguments passed to the plot function.

	Returns

	matplotlib.axes.Axes with the axes contaiing the plot.

singlet.dataset.dimensionality module

	
class singlet.dataset.dimensionality.DimensionalityReduction(dataset)

	Bases: object

Reduce dimensionality of gene expression and phenotype in single cells

	
pca(n_dims=2, transform='log10', robust=True, random_state=None)

	Principal component analysis

	Parameters

	
	n_dims (int) – Number of dimensions (2+).

	transform (string or None) – Whether to preprocess the data.

	robust (bool) – Whether to use Principal Component Pursuit to
exclude outliers.

	Returns

	
	dict of the left eigenvectors (vs), right eigenvectors (us)

	of the singular value decomposition, eigenvalues
(lambdas), the transform, and the whiten function (for
plotting).

	
tsne(n_dims=2, perplexity=30, theta=0.5, rand_seed=0, **kwargs)

	t-SNE algorithm.

	Parameters

	
	n_dims (int) – Number of dimensions to use.

	perplexity (float) – Perplexity of the algorithm.

	theta (float) – A number between 0 and 1. Higher is faster but
less accurate (via the Barnes-Hut approximation).

	rand_seed (int) – Random seed. -1 randomizes each run.

	**kwargs – Named arguments passed to the t-SNE algorithm.

Returns:

	
umap(n_dims=2, rand_seed=0, **kwargs)

	Uniform Manifold Approximation and Projection.

	Parameters

	
	n_dims (int) – Number of dimensions to use.

	rand_seed (int) – Random seed. -1 randomizes each run.

	**kwargs – Named arguments passed to umap.UMAP.

Returns:

singlet.io.csv package

Module contents

	
singlet.io.csv.parse_counts_table(path, fmt)

	

	
singlet.io.csv.parse_featuresheet(path, fmt)

	

	
singlet.io.csv.parse_samplesheet(path, fmt)

	

singlet.io.googleapi package

Submodules

singlet.io.googleapi.googleapi module

	
class singlet.io.googleapi.googleapi.GoogleAPI(spreadsheetId, spreadsheetname, client_id_filename, client_secret_filename)

	Bases: object

	
MAX_COLUMN = 'AZ'

	

	
add_sheet(sheetname)

	

	
application_name = 'Google Sheet API to singlet'

	

	
static convert_A24_to_row_col(well)

	

	
convert_range_json_to_A1(r)

	

	
classmethod convert_row_col_to_A1(row, col)

	

	
static convert_row_col_to_A24(row, col)

	

	
delete_sheet(sheetname)

	

	
get_backgrounds(sheetname)

	

	
get_cell_property(sheetname, field_string, ranges=())

	

	
get_credentials()

	Gets valid user credentials from storage.

If nothing has been stored, or if the stored credentials are invalid,
the OAuth2 flow is completed to obtain the new credentials.

	Returns

	Credentials, the obtained credential.

	
get_data(sheetname, ranges=())

	Get the whole sheet as a pandas dataframe

	
get_header_columns_indices(colnames, sheetname)

	Get the indices of columns in A1 notation

	
get_last_column(sheetname)

	

	
get_named_ranges(sheetname=None, fmt='dict', convert=True)

	

	
get_sheet_id(sheetname)

	

	
get_sheet_shape(sheetname)

	Get the data range of the sheet

	
get_sheetnames()

	

	
get_text_format(sheetname, prop, ranges=())

	

	
static hex_to_rgb(value)

	Return (red, green, blue) for the color given as #rrggbb.

	
static rgb_to_hex(rgb)

	Return color as #rrggbb for the given color values.

	
scopes = 'https://www.googleapis.com/auth/spreadsheets.readonly'

	

	
set_backgrounds(sheetname, bkgs, start_range=(0, 0))

	

	
set_cell_property(sheetname, field_string, data, start_range=(0, 0))

	

	
set_dimension_size(sheetname, dimension, pixel_size, dim_range=(None, None))

	

	
set_service()

	

	
set_sheet(sheetname, values)

	

	
set_text_format(sheetname, prop, fmts, start_range=(0, 0))

	

	
exception singlet.io.googleapi.googleapi.GoogleIOError

	Bases: OSError

singlet.io.googleapi.samplesheet module

	
class singlet.io.googleapi.samplesheet.SampleSheet(sheet)

	Bases: singlet.io.googleapi.googleapi.GoogleAPI

	
get_number_virus_reads(virus, icols=None)

	Get the number of virus reads from the spreadsheet

	
get_table(fmt='pandas')

	

	
update_tsv_table(sheetname, sandbox=True)

	Update TSV table from the Google Sheet

Module contents

	
singlet.io.googleapi.parse_samplesheet(sheet)

	

singlet.io package

Subpackages

	singlet.io.csv package
	Module contents

	singlet.io.googleapi package
	Submodules

	singlet.io.googleapi.googleapi module

	singlet.io.googleapi.samplesheet module

	Module contents

Module contents

	
singlet.io.parse_counts_table(dictionary)

	

	
singlet.io.parse_counts_table_sparse(dictionary)

	

	
singlet.io.parse_dataset(dictionary)

	

	
singlet.io.parse_featuresheet(dictionary)

	

	
singlet.io.parse_samplesheet(dictionary)

	

 _images/example_qc_coverage.png
10

0.8

< <
S S
uonnausIp AneinWND

02

0.0

102 10° 10% 10° 108
Number of reads

10!

10°

_images/example_qc_housekeeping.png
17500

15000

12500

10000

7500

Counts per million

5000

2500

- slo e

ACTB

GAPDH

gene name

TUBBL

_images/example_clustering.png
dimension 2

20

DBSCAN K-means, 7 clusters

-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
dimension 1 dimension 1

_images/example_pca.png
P2

80

60

40

20

-20

-60

-75

-50

-25

25

50

7

100

_images/example_tsne1.png
dimension 2

600

400

200

200

-400

—600

~1000

-750

-500

-250 0
dimension 1

250

500

750

_images/logo.png

_images/example_qc_spikeins.png
OO MO IO OO~ SH N A MO PN A I MEIN NI I~ BTN AN TS~ OMIOI S O NN DO OB HNOO HMHACNNMSONLNNG
B T S B B R N O AT PO BB A OO i i NN AT A A S 4 & AT D oI R BB BAND SO
B SO S8 E 0SS0 000 S8 SO0 0BG 000 B0 SOSE OO OB e e e A OO SEO OB ABBO S
833355830555363 05850050580 30858000330 08 0800 080800 0880005000 CE0 0B 300000008 CE0BCBEB00E00
B A A R R e g g g g g g g g g g g e e b e b e
SO0OGOLOLOHGOLOLOHGLLOGHLOLHGOLOLLOLLLOGHLOLLHLOLOOGOLLLLOHLOLLOILOLLHGOLULLOOLOOGOLOLLOGOLOOGOG
G0060000000 00000000000 C000 000 G0000000 000 Cu00 00000000000 00000000000 0000 00000000000 GO0 000000000000
O O O O O (0 (0 (G (U (L (0 (0 (L (O (O O e e Cr CrEE COre
e e T e e e e e e e e e e e i e e e i

aweu auab

300 400 500
Number of reads

200

100

_images/example_tsne.png
dimension 2

600

400

200

200

-400

—600

~1000

-750

-500

-250 0
dimension 1

250

500

750

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 singlet

 		
 Examples

 		
 Configuration

 		
 The SINGLET_CONFIG_FILENAME environment variable

 		
 The configuration file

 		
 io

 		
 API

 		
 API reference

 		
 singlet.dataset

 		
 singlet.counts_table

 		
 singlet.samplesheet

 		
 singlet.featureshet

 		
 singlet.dataset.cluster

 		
 singlet.dataset.correlations

 		
 singlet.dataset.dimensionality

 		
 singlet.dataset.feature_selection

 		
 singlet.dataset.fit

 		
 singlet.dataset.plot

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/example_pca.png
P2

80

60

40

20

-20

-60

-75

-50

-25

25

50

7

100

_static/example_qc_coverage.png
10

0.8

< <
S S
uonnausIp AneinWND

02

0.0

102 10° 10% 10° 108
Number of reads

10!

10°

_static/example_clustering.png
dimension 2

20

DBSCAN K-means, 7 clusters

-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
dimension 1 dimension 1

_static/example_qc_housekeeping.png
17500

15000

12500

10000

7500

Counts per million

5000

2500

- slo e

ACTB

GAPDH

gene name

TUBBL

_static/example_qc_spikeins.png
OO MO IO OO~ SH N A MO PN A I MEIN NI I~ BTN AN TS~ OMIOI S O NN DO OB HNOO HMHACNNMSONLNNG
B T S B B R N O AT PO BB A OO i i NN AT A A S 4 & AT D oI R BB BAND SO
B SO S8 E 0SS0 000 S8 SO0 0BG 000 B0 SOSE OO OB e e e A OO SEO OB ABBO S
833355830555363 05850050580 30858000330 08 0800 080800 0880005000 CE0 0B 300000008 CE0BCBEB00E00
B A A R R e g g g g g g g g g g g e e b e b e
SO0OGOLOLOHGOLOLOHGLLOGHLOLHGOLOLLOLLLOGHLOLLHLOLOOGOLLLLOHLOLLOILOLLHGOLULLOOLOOGOLOLLOGOLOOGOG
G0060000000 00000000000 C000 000 G0000000 000 Cu00 00000000000 00000000000 0000 00000000000 GO0 000000000000
O O O O O (0 (0 (G (U (L (0 (0 (L (O (O O e e Cr CrEE COre
e e T e e e e e e e e e e e i e e e i

aweu auab

300 400 500
Number of reads

200

100

_static/example_tsne.png
dimension 2

600

400

200

200

-400

—600

~1000

-750

-500

-250 0
dimension 1

250

500

750

_static/logo.png

_static/example_tsne_2.png
dimension 2

20

10

-10

0 10
dimension 1

20 30

_static/file.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

