
singlet Documentation
Release 0.4

Fabio Zanini

Dec 14, 2018

Contents

1 Requirements 3

2 Install 5

3 Usage example 7

4 Contents 9

5 Indices and tables 35

Bibliography 37

Python Module Index 39

i

ii

singlet Documentation, Release 0.4

Single cell RNA-Seq analysis with quantitative phenotypes.

Contents 1

singlet Documentation, Release 0.4

2 Contents

CHAPTER 1

Requirements

Python 3.4+ is required. Moreover, you will need:

• pyyaml

• numpy

• scipy

• pandas

• xarray

• scikit-learn

• matplotlib

• seaborn

1.1 Optional requirements

• umap (for UMAP dimensionality reduction)

Get those from pip or conda.

3

singlet Documentation, Release 0.4

4 Chapter 1. Requirements

CHAPTER 2

Install

To get the latest stable version, use pip:

pip install singlet

To get the latest development version, clone the git repo and then call:

python3 setup.py install

5

singlet Documentation, Release 0.4

6 Chapter 2. Install

CHAPTER 3

Usage example

You can have a look inside the test folder for examples. To start using the example dataset:

• Set the environment variable SINGLET_CONFIG_FILENAME to the location of the example YAML file

• Open a Python/IPython shell and type:

from singlet.dataset import Dataset
ds = Dataset(

samplesheet='example_sheet_tsv',
counts_table='example_table_tsv')

ds.counts = ds.counts.iloc[:200]
vs = ds.dimensionality.tsne(

n_dims=2,
transform='log10',
theta=0.5,
perplexity=0.8)

ax = ds.plot.scatter_reduced_samples(
vs,
color_by='quantitative_phenotype_1_[A.U.]')

plt.show()

This will calculate a t-SNE embedding of the first 200 features and then show your samples in the reduced space. It
should look like this:

7

singlet Documentation, Release 0.4

Note: The figure looks different on OSX, but no worries, if you got there without errors chances are all is working
correctly!

8 Chapter 3. Usage example

CHAPTER 4

Contents

4.1 Examples

• Example: Quality controls

• Example: Principal Component Analysis

• Example: t-SNE

• Example: Feature Selection

• Example: Split and compare

• Example: Classification of cell populations

• Example: Loom file

4.1.1 Example: Feature Selection

It is typical in scRNA-Seq experiments to filter out features that are not expressed in any sample, or at low levels
in very few samples. Moreover, of all remaining features, it is customary to select highly variable features for some
applications such as dimensionality reduction.

from singlet.dataset import Dataset
ds = Dataset(

samplesheet='example_sheet_tsv',
counts_table='example_table_tsv')

ds.counts.normalize('counts_per_million', inplace=True)

This selects only genes that are present at >= 5 counts per million in at least 2
→˓samples
ds.feature_selection.expressed(

n_samples=2,
exp_min=5,

(continues on next page)

9

singlet Documentation, Release 0.4

(continued from previous page)

inplace=True)

This selects highly variable features
ds.feature_selection.overdispersed_strata(

inplace=True)

4.1.2 Example: Loom file

Loom files are becoming a common way of sharing single cell transcriptomic data. In a loom file, a counts table, a
samplesheet, and a featuresheet are kept together inside a single file with an extension .loom. singlet supports
reading from loom files via config files.

Your singlet.yml must contain a section such as:

datasets:
ds1:
path: xxx.loom
format: loom
axis_samples: columns
index_samples: Cell
index_features: Gene

Then you can load you Dataset easily:

from singlet.dataset import Dataset
ds = Dataset(dataset='ds1')

To export a Dataset to a loom file, you can use the method to_dataset_file:

from singlet.dataset import Dataset
ds = Dataset(dataset='ds1')
ds.to_dataset_file('xxx.loom')

4.1.3 Example: Classification of cell populations

A typical application of scRNA-Seq is classification of cell populations in a heterogeneous tissue. In this example,
~200 Peripheral Mononuclear Blood Cells (PBMCs) are classified using feature selection, dimensionality reduction,
and unsupervised clustering.

import matplotlib.pyplot as plt
from singlet.dataset import Dataset

ds = Dataset(counts_table='example_PBMC')

Normalize
ds.counts.normalize(method='counts_per_million', inplace=True)
ds.counts.log(inplace=True)

Select features
ds.feature_selection.expressed(n_samples=3, exp_min=1, inplace=True)
ds.feature_selection.overdispersed_strata(

n_features_per_stratum=20,
inplace=True)

(continues on next page)

10 Chapter 4. Contents

singlet Documentation, Release 0.4

(continued from previous page)

Reduce dimensionality
vs = ds.dimensionality.tsne(

n_dims=2,
theta=0.5,
perplexity=0.8)

Reset the counts with the reduced values
ds.counts = vs.T

Cluster
ds.samplesheet['dbscan'] = ds.cluster.dbscan(eps=5, axis='samples')
ds.samplesheet['kmeans'] = ds.cluster.kmeans(n_clusters=7, axis='samples')

Plot t-SNE
fig, axs = plt.subplots(

nrows=1, ncols=2, sharex=True, sharey=True,
figsize=(8, 4))

ds.plot.scatter_reduced_samples(vs, color_by='dbscan', ax=axs[0], zorder=10)
ds.plot.scatter_reduced_samples(vs, color_by='kmeans', ax=axs[1], zorder=10)

axs[0].set_title('DBSCAN')
axs[1].set_title('K-means, 7 clusters')

plt.tight_layout()
plt.show()

You should get figures similar to the following one:

4.1. Examples 11

singlet Documentation, Release 0.4

4.1.4 Example: Principal Component Analysis

Principal Component Analysis (PCA) is a popular dimensionality reduction method. Because outlier samples can
strongly affect the results of PCA, singlet also implements a robust PCA version via Principal Component Pursuit
(cite).

from singlet.dataset import Dataset
ds = Dataset(

samplesheet='example_sheet_tsv',
counts_table='example_table_tsv')

ds.counts.normalize('counts_per_million', inplace=True)
ds.counts = ds.counts.iloc[:200]

print('Calculate PCA')
vs = ds.dimensionality.pca(

n_dims=2,
transform='log10',
robust=False)['vs']

print('Plot PCA')

(continues on next page)

12 Chapter 4. Contents

singlet Documentation, Release 0.4

(continued from previous page)

ax = ds.plot.scatter_reduced_samples(
vs,
color_by='ACTB')

plt.show()

You should get figures similar to the following ones:

4.1.5 Example: Quality controls

A typical task right off the bat in single-cell sequencing projects is to look at some statistics of the sequencing reads,
for instance the number of reads for each cell (coverage), the fraction of mapped reads, and the abundance of spike-in
controls and housekeeping genes.

from singlet.dataset import Dataset
ds = Dataset(

(continues on next page)

4.1. Examples 13

singlet Documentation, Release 0.4

(continued from previous page)

samplesheet='example_sheet_tsv',
counts_table='example_table_tsv')

print('Plot coverage')
ax = ds.plot.plot_coverage(color='blue', lw=3)
ax = ds.plot.plot_coverage(

features='other', color='red', linewidth=1,
ax=ax)

print('Plot spike-in distributions')
ax = ds.plot.plot_distributions(

kind='swarm',
features='spikeins',
orientation='horizontal',
sort='descending')

print('Plot normalized distributions of housekeeping genes')
ds.counts.normalize('counts_per_million', inplace=True)
ax = ds.plot.plot_distributions(

kind='swarm',
features=['ACTB', 'TUBB1', 'GAPDH'],
orientation='vertical',
bottom='pseudocount',
grid=True,
sort='descending')

plt.show()

You should get figures similar to the following ones:

14 Chapter 4. Contents

singlet Documentation, Release 0.4

4.1. Examples 15

singlet Documentation, Release 0.4

4.1.6 Example: Split and compare

Singlet allows you to split a dataset based on metadata in a single line. Moreover, it is easy to perform statistical
comparisons between two datasets, comparing feature expression and/or phenotypes with any statistical test you like.

from singlet.dataset import Dataset
ds = Dataset(

samplesheet='example_sheet_tsv',
counts_table='example_table_tsv')

ds.counts.normalize('counts_per_million', inplace=True)

Split dataset based on metadata
dataset_dict = ds.split('experiment')

Statistical comparison of features between datasets
dataset_dict['test_pipeline'].compare(

dataset_dict['exp1'],
method='mann-whitney')

Note: Mann-Whitney’s U test and two sample Kolmogorov-Smirnov’s test are built-ins, but you can just set method
to any function you want that calculates the P-values.

4.1.7 Example: t-SNE

t-SNE [tsne] is a commonly used algorithm to reduce dimensionality in single cell data.

from singlet.dataset import Dataset
ds = Dataset(

samplesheet='example_sheet_tsv',

(continues on next page)

16 Chapter 4. Contents

singlet Documentation, Release 0.4

(continued from previous page)

counts_table='example_table_tsv')

ds.counts.normalize('counts_per_million', inplace=True)
ds.counts = ds.counts.iloc[:200]

print('Calculate t-SNE')
vs = ds.dimensionality.tsne(

n_dims=2,
transform='log10',
theta=0.5,
perplexity=0.8)

print('Plot t-SNE')
ax = ds.plot.scatter_reduced_samples(

vs,
color_by='quantitative_phenotype_1_[A.U.]')

plt.show()

You should get figures similar to the following ones:

4.1. Examples 17

singlet Documentation, Release 0.4

4.2 Configuration

Singlet is designed to work on separate projects at once. To keep projects tidy and independent, there are two layers
of configuration.

4.2.1 The SINGLET_CONFIG_FILENAME environment variable

If you set the environment variable SINGLET_CONFIG_FILENAME to point at a YAML file, singlet will use it to
configure your current session. To use separate sessions in parallel, just prepend your scripts with:

import os
os.environ['SINGLET_CONFIG_FILENAME'] = '<full path to config file>'

and each will work totally independently.

4.2.2 The configuration file

Singlet loads a configuration file in YAML format when you import the singlet module. If you have not specified
the location of this file with the SINGLET_CONFIG_FILENAME environment variable, it defaults to:

<your home folder>/.singlet/config.yml

so the software will look there. An example configuration file is online. If you are not familiar with YAML syntax, it
is a bit like Python dictionaries without brackets. . . or like JSON.

Before going into the specifics, here’s a schematic example of the configuration file:

io:
samplesheets:
ss1:

path: xxx.csv
index: samplename

featuresheets:
fs1:

path: yyy.csv
index: EnsemblGeneID

count_tables:
ct1:

path: zzz.csv
normalized: no
spikeins:

- ERCC-00002
- ERCC-00003

other:
- __alignment_not_unique
- __not_aligned

datasets:
ds1:

path: xxx.loom
format: loom
axis_samples: columns

(continues on next page)

18 Chapter 4. Contents

http://www.yaml.org/start.html
https://github.com/iosonofabio/singlet/blob/master/example_data/config_example.yml

singlet Documentation, Release 0.4

(continued from previous page)

index_samples: Cell
index_features: Gene

Now for the full specification, the root key value pairs are:

• io: for input/output specifications. At the moment this key is the only master key and is required.

There are no root lists.

io

The io section has the following key value pairs:

• samplesheets: samplesheet files or Google Documents (for sample metadata).

• featuresheets: featuresheet files (for feature/gene annotations or metadata).

• count_tables: count table files.

• datasets: integrated datasets (a single file contains all three properties above, e.g. loom files).

samplesheets

The samplesheets section contains an arbitrary number of key value pairs and no lists. Each entry describes a samplesheet and has the following format:

• the key determines the id of the samplesheet: this id is used in the contstructor of Dataset.

• the value is a series of key value pairs, no lists.

Singlet can source samplesheets either from a local file or from an online Google Sheet. If you want to use a local file, use the following key value pairs:

• path: a filename on disk containing the samplesheet, usually in CSV/TSV format.

• format: a file format of the samplesheet (optional). If missing, it is inferred from the path filename.

If you prefer to source an online Google Sheet, use the following key value pairs:

• url: the URL of the spreadsheet, e.g. ‘https://docs.google.com/spreadsheets/d/
15OKOC48WZYFUQvYl9E7qEsR6AjqE4_BW7qcCsjJAD6w’ for the example sheet.

• client_id_filename: a local filename (initially empty) where your login information for OAUTH2
is stored. This is a JSON file so this variable typically ends with .json

• client_secret_filename: a local filename (initially empry) where your secret information for
OAUTH2 is stored. This is a JSON file so this variable typically ends with .json

• sheet: the name of the sheet with the data within the spreadsheet.

Whichever way you are using to source the data, the following key value pairs are available:

• description: a description of the sample sheet (optional).

• cells: one of rows or columns. If each row in the samplesheet is a sample, use rows, else use
columns. Notice that singlet samplesheets have samples as rows.

• index: the name of the column/row of the samplesheet containing the sample names. This defaults to
name (optional).

4.2. Configuration 19

http://loompy.org/
https://docs.google.com/spreadsheets/d/15OKOC48WZYFUQvYl9E7qEsR6AjqE4_BW7qcCsjJAD6w
https://docs.google.com/spreadsheets/d/15OKOC48WZYFUQvYl9E7qEsR6AjqE4_BW7qcCsjJAD6w

singlet Documentation, Release 0.4

count_tables

The count_tables section contains an arbitrary number of key value pairs and no lists. Each entry describes a counts table and has the following format:

• the key determines the id of the counts table: this id is used in the contstructor of Dataset.

• the value is a series of key value pairs, no lists.

The following key value pairs are available:

• description: a description of the counts table (optional).

• path: a filename on disk containing the counts table, usually in CSV/TSV format.

• format: a file format of the counts table (optional). If missing, it is inferred from the path filename.

• cells: one of rows or columns. If each row in the counts table is a sample, use rows, else use
columns.

• normalized: either yes or no. If data is not normalized, you can normalize it with singlet by using the
CountsTable.normalize method.

• sparse: either yes or no (default). If yes, the count table will be loaded by default as
CountsTableSparse, else as CountsTable (dense).

• spikeins: a YAML list of features that appear in the counts table and represent spike-in controls
as opposed to real features. Spikeins can be excluded from the counts table using CountsTable.
exclude_features.

• other: a YAML list of features that are neither biological features nor spike-in controls. This list typically
includes ambiguous alignments, multiple-aligned reads, reads outside features, etc. Other features can be
excluded from the counts table using CountsTable.exclude_features.

The first column/row of the counts table must be the list of samples.

featuresheets

The featuresheets section contains an arbitrary number of key value pairs and no lists. Each entry describes a featuresheet, i.e. a table with metadata for the features. A typical usage of featuresheets is to connect feature ids (e.g. EnsemblGeneID) with human-readable names, Gene Ontology terms, species information, pathways, cellular localization, etc. Each entry has the following format:

• the key is the id of the featuresheet: this id is used in the constructor of Dataset.

• the value is a series of key value pairs, no lists.

The following key value pairs are available:

• description: a description of the featuresheet (optional).

• path: a filename on disk containing the featuresheet, usually in CSV/TSV format.

• format: a file format of the featuresheet (optional). If missing, it is inferred from the path filename.

• features: one of rows or columns. If each feature in the featuresheet is a feature, use rows,
otherwise use columns.

• index: the name of the column/row of the featuresheet containing the feature names. This defaults to
name (optional).

20 Chapter 4. Contents

singlet Documentation, Release 0.4

datasets

The datasets section contains an arbitrary number of key value pairs and no lists. Each entry describes an integrated dataset, i.e. a single file containing one or more of the three main data structures (CountsTable, Samplesheet, and Featuresheet). The most common use of integrated datasets is when all three data structures are present and they are embedded in a single file for portability purposes or lazy evaluation (the latter is not implemented yet). Each entry has the following format:

• the key is the id of the dataset: this id is used in the constructor of Dataset.

• the value is a series of key value pairs, no lists.

The following key value pairs are available:

• description: a description of the dataset (optional).

• path: a filename on disk containing the integrated dataset, e.g. in LOOM format.

• format: a file format of the dataset (optional). If missing, it is inferred from the path filename.

• axis_samples: one of rows or columns. If every sample is a column in the count matrix, use
columns, else use rows.

• index_samples: the name of the column/row of the dataset containing the sample names.

• index_features: the name of the column/row of the dataset containing the feature names.

4.3 API

Singlet analysis is centered around the Dataset class, which describes a set of samples (usually single cells). Each
Dataset has three main properties:

• a CountsTable with the counts of genomic features, typically transcripts

• a SampleSheet with the sample metdata and phenotypic information.

• a FeatureSheet with the feature metdata, for instance alternative names and Gene Ontology terms.

At least one of the three properties must be present. In fact, you are perfectly free to set only the feature counts or even,
although may be not so useful, only the sample metadata. Moreover, a Dataset has a number of “action properties”
that perform operations on the data:

• Dataset.correlations: correlate feature expressions and phenotypes

• Dataset.feature_selection: select features based on expression patterns

• Dataset.dimensionality: reduce dimensionality of the data including phenotypes

• Dataset.cluster: cluster samples, features, and phenotypes

• Dataset.fit: fit (regress on) feature expression and metadata

• Dataset.plot: plot the results of various analyses

Supporting modules are useful for particular purposes or internal use only:

• config

• utils

• io

4.3. API 21

singlet Documentation, Release 0.4

4.3.1 API reference

singlet.dataset

class singlet.dataset.Dataset(counts_table=None, samplesheet=None, featuresheet=None,
dataset=None, plugins=None)

Bases: object

Collection of cells, with feature counts and metadata

average(axis, column)
Average samples or features based on metadata

Parameters

• axis (string) – Must be ‘samples’ or ‘features’.

• column (string) – Must be a column of the samplesheet (for axis=’samples’) or of
the featuresheet (for axis=’features’). Samples or features with a common value in this
column are averaged over.

Returns A Dataset with the averaged counts.

Note: if you average over samples, you get an empty samplesheet. Simlarly, if you average over features,
you get an empty featuresheet.

bootstrap(groupby=None)
Resample with replacement, aka bootstrap dataset

Parameters

• groupby (str or list of str or None) – If None, bootstrap random

• disregarding sample metadata. If a string or a list of
(samples) –

• boostrap over groups of samples with consistent (strings,) –

• for that/those columns. (entries) –

Returns A Dataset with the resampled samples.

compare(other, features=’mapped’, phenotypes=(), method=’kolmogorov-smirnov’)
Statistically compare with another Dataset.

Parameters

• other (Dataset) – The Dataset to compare with.

• features (list, string, or None) – Features to compare. The string ‘total’
means all features including spikeins and other, ‘mapped’ means all features excluding
spikeins and other, ‘spikeins’ means only spikeins, and ‘other’ means only ‘other’ features.
If empty list or None, do not compare features (useful for phenotypic comparison).

• phenotypes (list of strings) – Phenotypes to compare.

• method (string or function) – Statistical test to use for the comparison. If a
string it must be one of ‘kolmogorov-smirnov’ or ‘mann-whitney’. If a function, it must
accept two arrays as arguments (one for each dataset, running over the samples) and return
a P-value for the comparison.

Returns

A pandas.DataFrame containing the P-values of the comparisons for all features and
phenotypes.

22 Chapter 4. Contents

singlet Documentation, Release 0.4

copy()
Copy of the Dataset

counts
Matrix of gene expression counts.

Rows are features, columns are samples.

Notice: If you reset this matrix with features that are not in the featuresheet or samples that are not in
the samplesheet, those tables will be reset to empty.

featuremetadatanames
pandas.Index of feature metadata column names

featurenames
pandas.Index of feature names

featuresheet
Matrix of feature metadata.

Rows are features, columns are metadata (e.g. Gene Ontologies).

n_features
Number of features

n_samples
Number of samples

query_features_by_counts(expression, inplace=False, local_dict=None)
Select features based on their expression.

Parameters

• expression (string) – An expression compatible with pandas.DataFrame.query.

• inplace (bool) – Whether to change the Dataset in place or return a new one.

• local_dict (dict) – A dictionary of local variables, useful if you are using @var
assignments in your expression. By far the most common usage of this argument is to set
local_dict=locals().

Returns If inplace is True, None. Else, a Dataset.

query_features_by_metadata(expression, inplace=False, local_dict=None)
Select features based on metadata.

Parameters

• expression (string) – An expression compatible with pandas.DataFrame.query.

• inplace (bool) – Whether to change the Dataset in place or return a new one.

• local_dict (dict) – A dictionary of local variables, useful if you are using @var
assignments in your expression. By far the most common usage of this argument is to set
local_dict=locals().

Returns If inplace is True, None. Else, a Dataset.

query_features_by_name(featurenames, inplace=False, ignore_missing=False)
Select features by name.

Parameters

• featurenames – names of the features to keep.

• inplace (bool) – Whether to change the Dataset in place or return a new one.

4.3. API 23

singlet Documentation, Release 0.4

• ignore_missing (bool) – Whether to silently skip missing features.

query_samples_by_counts(expression, inplace=False, local_dict=None)
Select samples based on gene expression.

Parameters

• expression (string) – An expression compatible with pandas.DataFrame.query.

• inplace (bool) – Whether to change the Dataset in place or return a new one.

• local_dict (dict) – A dictionary of local variables, useful if you are using @var
assignments in your expression. By far the most common usage of this argument is to set
local_dict=locals().

Returns If inplace is True, None. Else, a Dataset.

query_samples_by_metadata(expression, inplace=False, local_dict=None)
Select samples based on metadata.

Parameters

• expression (string) – An expression compatible with pandas.DataFrame.query.

• inplace (bool) – Whether to change the Dataset in place or return a new one.

• local_dict (dict) – A dictionary of local variables, useful if you are using @var
assignments in your expression. By far the most common usage of this argument is to set
local_dict=locals().

Returns If inplace is True, None. Else, a Dataset.

query_samples_by_name(samplenames, inplace=False, ignore_missing=False)
Select samples by name.

Parameters

• samplenames – names of the samples to keep.

• inplace (bool) – Whether to change the Dataset in place or return a new one.

• ignore_missing (bool) – Whether to silently skip missing samples.

rename(axis, column, inplace=False)
Rename samples or features

Parameters

• axis (string) – Must be ‘samples’ or ‘features’.

• column (string) – Must be a column of the samplesheet (for axis=’samples’) or of the
featuresheet (for axis=’features’) with unique names of samples or features.

• inplace (bool) – Whether to change the Dataset in place or return a new one.

samplemetadatanames
pandas.Index of sample metadata column names

samplenames
pandas.Index of sample names

samplesheet
Matrix of sample metadata.

Rows are samples, columns are metadata (e.g. phenotypes).

24 Chapter 4. Contents

singlet Documentation, Release 0.4

split(phenotypes, copy=True)
Split Dataset based on one or more categorical phenotypes

Parameters phenotypes (string or list of strings) – one or more phenotypes
to use for the split. Unique values of combinations of these determine the split Datasets.

Returns

the keys are either unique values of the phenotype chosen or, if more than one, tuples of
unique combinations.

Return type dict of Datasets

to_dataset_file(filename, fmt=None, **kwargs)
Store dataset into an integrated dataset file

Parameters

• filename (str) – path of the file to write to.

• fmt (str or None) – file format. If None, infer from the file

• extension. –

• **kwargs (keyword arguments) – depend on the format.

The additional keyword argument for the supported formats are: - loom:

• axis_samples: rows or columns (default)

singlet.counts_table

author: Fabio Zanini date: 26/10/18 content: Module for counts tables.

singlet.samplesheet

class singlet.samplesheet.SampleSheet(data=None, index=None, columns=None,
dtype=None, copy=False)

Bases: pandas.core.frame.DataFrame

classmethod from_datasetname(datasetname)

classmethod from_sheetname(sheetname)

singlet.featureshet

class singlet.featuresheet.FeatureSheet(data=None, index=None, columns=None,
dtype=None, copy=False)

Bases: pandas.core.frame.DataFrame

classmethod from_datasetname(datasetname)

classmethod from_sheetname(sheetname)

singlet.dataset.cluster

class singlet.dataset.cluster.Cluster(dataset)
Bases: object

Cluster samples, features, and phenotypes

4.3. API 25

singlet Documentation, Release 0.4

dbscan(axis, phenotypes=(), **kwargs)
Density-Based Spatial Clustering of Applications with Noise.

Parameters

• axis (string) – It must be ‘samples’ or ‘features’. The Dataset.counts matrix is used
and either samples or features are clustered.

• phenotypes (iterable of strings) – Phenotypes to add to the features for joint
clustering.

• log_features (bool) – Whether to add pseudocounts and take a log of the feature
counts before calculating distances.

• **kwargs – arguments passed to sklearn.cluster.DBSCAN.

Returns pd.Series with the labels of the clusters.

hierarchical(axis, phenotypes=(), metric=’correlation’, method=’average’, log_features=False,
optimal_ordering=False)

Hierarchical clustering.

Parameters

• axis (string) – It must be ‘samples’ or ‘features’. The Dataset.counts matrix is used
and either samples or features are clustered.

• phenotypes (iterable of strings) – Phenotypes to add to the features for joint
clustering.

• metric (string) – Metric to calculate the distance matrix. Should be a string accepted
by scipy.spatial.distance.pdist.

• method (string) – Clustering method. Must be a string accepted by
scipy.cluster.hierarchy.linkage.

• log_features (bool) – Whether to add pseudocounts and take a log of the feature
counts before calculating distances.

• optimal_ordering (bool) – Whether to resort the linkage so that nearest neighbours
have shortest distance. This may take longer than the clustering itself.

Returns dict with the linkage, distance matrix, and ordering.

kmeans(n_clusters, axis, phenotypes=(), random_state=0)
K-Means clustering.

Parameters

• n_clusters (int) – The number of clusters you want.

• axis (string) – It must be ‘samples’ or ‘features’. The Dataset.counts matrix is used
and either samples or features are clustered.

• phenotypes (iterable of strings) – Phenotypes to add to the features for joint
clustering.

• log_features (bool) – Whether to add pseudocounts and take a log of the feature
counts before calculating distances.

• random_state (int) – Set to the same int for deterministic results.

Returns pd.Series with the labels of the clusters.

26 Chapter 4. Contents

singlet Documentation, Release 0.4

singlet.dataset.correlations

class singlet.dataset.correlations.Correlation(dataset)
Bases: object

Correlate gene expression and phenotype in single cells

correlate_features_features(features=’all’, features2=None, method=’spearman’)
Correlate feature expression with one or more phenotypes.

Parameters

• features (list or string) – list of features to correlate. Use a string for a single
feature. The special string ‘all’ (default) uses all features.

• features2 (list or string) – list of features to correlate with. Use a string for a
single feature. The special string ‘all’ uses all features. None (default) takes the same list
as features, returning a square matrix.

• method (string) – type of correlation. Must be one of ‘pearson’ or ‘spearman’.

Returns

pandas.DataFrame with the correlation coefficients. If either features or features2 is a
single string, the function returns a pandas.Series. If both are a string, it returns a sin-
gle correlation coefficient.

correlate_features_phenotypes(phenotypes, features=’all’, method=’spearman’,
fillna=None)

Correlate feature expression with one or more phenotypes.

Parameters

• phenotypes (list of string) – list of phenotypes, i.e. columns of the sam-
plesheet. Use a string for a single phenotype.

• features (list or string) – list of features to correlate. Use a string for a single
feature. The special string ‘all’ (default) uses all features.

• method (string) – type of correlation. Must be one of ‘pearson’ or ‘spearman’.

• fillna (dict, int, or None) – a dictionary with phenotypes as keys and num-
bers to fill for NaNs as values. None will do nothing.

Returns

pandas.DataFrame with the correlation coefficients. If either phenotypes or features is a
single string, the function returns a pandas.Series. If both are a string, it returns a single
correlation coefficient.

correlate_phenotypes_phenotypes(phenotypes, phenotypes2=None, method=’spearman’,
fillna=None, fillna2=None)

Correlate feature expression with one or more phenotypes.

Parameters

• phenotypes (list of string) – list of phenotypes, i.e. columns of the sam-
plesheet. Use a string for a single phenotype.

• phenotypes2 (list of string) – list of phenotypes, i.e. columns of the sam-
plesheet. Use a string for a single phenotype. None (default) uses the same as phenotypes.

• method (string) – type of correlation. Must be one of ‘pearson’ or ‘spearman’.

4.3. API 27

singlet Documentation, Release 0.4

• fillna (dict, int, or None) – a dictionary with phenotypes as keys and num-
bers to fill for NaNs as values. None will do nothing, potentially yielding NaN as correla-
tion coefficients.

• fillna2 (dict, int, or None) – as fillna, but for phenotypes2.

Returns

pandas.DataFrame with the correlation coefficients. If either phenotypes or features is a
single string, the function returns a pandas.Series. If both are a string, it returns a single
correlation coefficient.

correlate_samples(samples=’all’, samples2=None, phenotypes=None, method=’spearman’)
Correlate feature expression with one or more phenotypes.

Parameters

• samples (list or string) – list of samples to correlate. Use a string for a single
sample. The special string ‘all’ (default) uses all samples.

• samples2 (list or string) – list of samples to correlate with. Use a string for a
single sample. The special string ‘all’ uses all samples. None (default) takes the same list
as samples, returning a square matrix.

• method (string) – type of correlation. Must be one of ‘pearson’ or ‘spearman’.

• phenotypes (list) – phenotypes to include as additional features in the correlation
calculation. None (default) means only feature counts are used.

Returns

pandas.DataFrame with the correlation coefficients. If either samples or samples2 is a
single string, the function returns a pandas.Series. If both are a string, it returns a single
correlation coefficient.

mutual_information(xs, ys)
Mutual information between feature counts and/or phenotypes

Parameters

• xs (list or string) – Features and/or phenotypes to use as abscissa (independent
variable). The string ‘total’ means all features including spikeins and other, ‘mapped’
means all features excluding spikeins and other, ‘spikeins’ means only spikeins, and
‘other’ means only ‘other’ features.

• ys (list or string) – Features and/or phenotypes to use as ordinate (dependent
variable). The string ‘total’ means all features including spikeins and other, ‘mapped’
means all features excluding spikeins and other, ‘spikeins’ means only spikeins, and
‘other’ means only ‘other’ features.

NOTE: Mutual information is defined only for discrete or categorical variables and require a decent
coverage of all bins or categories because it has p(x)p(y) in the denominator. Feature counts and
quantitative phenotypes require binning prior to calculating Mutual information. See CountsTable.bin
and SampleSheet.bin for options. This function uses all unique values in the counts and phenotyes as
separate bins.

singlet.dataset.dimensionality

class singlet.dataset.dimensionality.DimensionalityReduction(dataset)
Bases: object

28 Chapter 4. Contents

singlet Documentation, Release 0.4

Reduce dimensionality of gene expression and phenotype in single cells

pca(n_dims=2, transform=’log10’, robust=True, random_state=None)
Principal component analysis

Parameters

• n_dims (int) – Number of dimensions (2+).

• transform (string or None) – Whether to preprocess the data.

• robust (bool) – Whether to use Principal Component Pursuit to exclude outliers.

Returns

dict of the left eigenvectors (vs), right eigenvectors (us) of the singular value decomposi-
tion, eigenvalues (lambdas), the transform, and the whiten function (for plotting).

tsne(n_dims=2, perplexity=30, theta=0.5, rand_seed=0, **kwargs)
t-SNE algorithm.

Parameters

• n_dims (int) – Number of dimensions to use.

• perplexity (float) – Perplexity of the algorithm.

• theta (float) – A number between 0 and 1. Higher is faster but less accurate (via the
Barnes-Hut approximation).

• rand_seed (int) – Random seed. -1 randomizes each run.

• **kwargs – Named arguments passed to the t-SNE algorithm.

Returns:

umap(n_dims=2, rand_seed=0, **kwargs)
Uniform Manifold Approximation and Projection.

Parameters

• n_dims (int) – Number of dimensions to use.

• rand_seed (int) – Random seed. -1 randomizes each run.

• **kwargs – Named arguments passed to umap.UMAP.

Returns:

singlet.dataset.feature_selection

class singlet.dataset.feature_selection.FeatureSelection(dataset)
Bases: object

Plot gene expression and phenotype in single cells

expressed(n_samples, exp_min, inplace=False)
Select features that are expressed in at least some samples.

Parameters

• n_samples (int) – Minimum number of samples the features should be expressed in.

• exp_min (float) – Minimum level of expression of the features.

• inplace (bool) – Whether to change the feature list in place.

4.3. API 29

singlet Documentation, Release 0.4

Returns pd.Index of selected features if not inplace, else None.

overdispersed_strata(bins=10, n_features_per_stratum=50, inplace=False)
Select overdispersed features in strata of increasing expression.

Parameters

• bins (int or list) – Bin edges determining the strata. If this is a number, split the
expression in this many equally spaced bins between minimal and maximal expression.

• n_features_per_stratum (int) – Number of features per stratum to select.

Returns pd.Index of selected features if not inplace, else None.

Notice that the number of selected features may be smaller than expected if some strata have no dispersion
(e.g. only dropouts). Because of this, it is recommended you restrict the counts to expressed features
before using this function.

sam(k=None, distance=’correlation’, *args, **kwargs)
Calculate feature weights via self-assembling manifolds

Parameters

• k (int or None) – The number of nearest neighbors for each sample

• distance (str) – The distance matrix

• **kwargs (*args,) – Arguments to SAM.run

Returns SAM instance containing SAM.output_vars[‘gene_weights’]

See also: https://github.com/atarashansky/self-assembling-manifold

unique(inplace=False)
Select features with unique ids

Parameters inplace (bool) – Whether to change the feature list in place.

Returns pd.Index of selected features if not inplace, else None.

singlet.dataset.fit

class singlet.dataset.fit.Fit(dataset)
Bases: object

Fit gene expression and phenotype in single cells

fit_single(xs, ys, model, method=’least-squares’, handle_nans=’ignore’, **kwargs)
Fit feature expression or phenotypes against other.

Parameters

• xs (list or string) – Features and/or phenotypes to use as abscissa (independent
variable). The string ‘total’ means all features including spikeins and other, ‘mapped’
means all features excluding spikeins and other, ‘spikeins’ means only spikeins, and
‘other’ means only ‘other’ features.

• ys (list or string) – Features and/or phenotypes to use as ordinate (dependent
variable). The string ‘total’ means all features including spikeins and other, ‘mapped’
means all features excluding spikeins and other, ‘spikeins’ means only spikeins, and
‘other’ means only ‘other’ features.

30 Chapter 4. Contents

https://github.com/atarashansky/self-assembling-manifold

singlet Documentation, Release 0.4

• model (string or function) – The model to use for fitting. If a string, it must be
one of ‘linear’, ‘threshold-linear’, ‘logistic’. If a function, it must accept an array as first ar-
gument (the x) and the parameters as additional arguments (like scipy.optimize.curve_fit).

• method (string or function) – The minimization algorithm. For now, only
‘least-squares’ is accepted. In this case, the goodness of fit is the sum of the squared
residues.

• handle_nans (string) – How to deal with Not a Numbers, typically in the pheno-
types. Must be either ‘ignore’ (default), in which case only the non-NaN samples will be
used for fitting, or ‘raise’, in which case NaNs will stop the fit.

• **kwargs – Passed to the fit function. For nonlinear least-squares, this is
scipy.optimize.curve_fit. Linear least-squares is analytical so it ignores **kwargs.

Returns A 3-dimensional xarray with the xs, ys as first two axes. The third axis, called ‘results’,
contains the parameters and an assessment of the fit quality. If method is least-squres, it is
the sum of squared residuals.

NOTE: This function fits every combination of x and y independently, interactions are not consid-
ered.

singlet.dataset.plot

class singlet.dataset.plot.Plot(dataset)
Bases: object

Plot gene expression and phenotype in single cells

clustermap(cluster_samples=False, cluster_features=False, phenotypes_cluster_samples=(), phe-
notypes_cluster_features=(), annotate_samples=False, annotate_features=False, la-
bels_samples=True, labels_features=True, orientation=’horizontal’, colorbars=False,
**kwargs)

Samples versus features / phenotypes.

Parameters

• cluster_samples (bool or linkage) – Whether to cluster samples and show the
dendrogram. Can be either, False, True, or a linkage from scipy.cluster.hierarchy.linkage.

• cluster_features (bool or linkage) – Whether to cluster features
and show the dendrogram. Can be either, False, True, or a linkage from
scipy.cluster.hierarchy.linkage.

• phenotypes_cluster_samples (iterable of strings) – Phenotypes to
add to the features for joint clustering of the samples. If the clustering has been precom-
puted including phenotypes and the linkage matrix is explicitely set as cluster_samples,
the same phenotypes must be specified here, in the same order.

• phenotypes_cluster_features (iterable of strings) – Phenotypes to
add to the features for joint clustering of the features and phenotypes. If the clustering
has been precomputed including phenotypes and the linkage matrix is explicitely set as
cluster_features, the same phenotypes must be specified here, in the same order.

• annotate_samples (dict, or False) – Whether and how to annotate the sam-
ples with separate colorbars. The dictionary must have phenotypes or features as keys.
For qualitative phenotypes, the values can be palette names or palettes (with at least as
many colors as there are categories). For quantitative phenotypes and features, they can
be colormap names or colormaps.

4.3. API 31

singlet Documentation, Release 0.4

• annotate_features (dict, or False) – Whether and how to annotate the feat-
ues with separate colorbars. The dictionary must have features metadata as keys. For
qualitative annotations, the values can be palette names or palettes (with at least as many
colors as there are categories). For quantitative annotatoins, the values can be colormap
names or colormaps. Keys must be columns of the Dataset.featuresheet, except for the key
‘mean expression’ which is interpreted to mean the average of the counts for that feature.

• labels_samples (bool) – Whether to show the sample labels. If you have hundreds
or more samples, you may want to turn this off to make the plot tidier.

• labels_features (bool) – Whether to show the feature labels. If you have hundreds
or more features, you may want to turn this off to make the plot tidier.

• orientation (string) – Whether the samples are on the abscissa (‘horizontal’) or
on the ordinate (‘vertical’).

• tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at
the end of the plotting. If it is a dict, pass it unpacked to that function.

• colorbars (bool) – Whether to add colorbars. One colorbar refers to the heatmap.
Moreover, if annotations for samples or features are shown, a colorbar for each of them
will be shown as well.

• **kwargs – named arguments passed to seaborn.clustermap.

Returns A seaborn ClusterGrid instance.

gate_features_from_statistics(features=’mapped’, x=’mean’, y=’cv’, **kwargs)
Select features for downstream analysis with a gate.

Usage: Click with the left mouse button to set the vertices of a polygon. Double left-click closes the shape.
Right click resets the plot.

Parameters

• features (list or string) – List of features to plot. The string ‘mapped’ means
everything excluding spikeins and other, ‘all’ means everything including spikeins and
other.

• x (string) – Statistics to plot on the x axis.

• y (string) – Statistics to plot on the y axis.

• **kwargs – named arguments passed to the plot function.

Returns pd.Index of features within the gate.

plot_coverage(features=’total’, kind=’cumulative’, ax=None, tight_layout=True, legend=False,
**kwargs)

Plot number of reads for each sample

Parameters

• features (list or string) – Features to sum over. The string ‘total’ means all
features including spikeins and other, ‘mapped’ means all features excluding spikeins and
other, ‘spikeins’ means only spikeins, and ‘other’ means only ‘other’ features.

• kind (string) – Kind of plot (default: cumulative distribution).

• ax (matplotlib.axes.Axes) – The axes to plot into. If None (default), a new figure
with one axes is created. ax must not strictly be a matplotlib class, but it must have
common methods such as ‘plot’ and ‘set’.

• tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at
the end of the plotting. If it is a dict, pass it unpacked to that function.

32 Chapter 4. Contents

singlet Documentation, Release 0.4

• legend (bool or dict) – If True, call ax.legend(). If a dict, pass as **kwargs to
ax.legend.

• **kwargs – named arguments passed to the plot function.

Returns matplotlib.axes.Axes with the axes contaiing the plot.

plot_distributions(features, kind=’violin’, ax=None, tight_layout=True, legend=False, orienta-
tion=’vertical’, sort=False, bottom=0, grid=None, **kwargs)

Plot distribution of spike-in controls

Parameters

• features (list or string) – List of features to plot. If it is the string ‘spikeins’,
plot all spikeins, if the string ‘other’, plot other features.

• kind (string) – Kind of plot, one of ‘violin’ (default), ‘box’, ‘swarm’.

• ax (matplotlib.axes.Axes) – Axes to plot into. If None (default), create a new
figure and axes.

• tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at
the end of the plotting. If it is a dict, pass it unpacked to that function.

• legend (bool or dict) – If True, call ax.legend(). If a dict, pass as **kwargs to
ax.legend.

• orientation (string) – ‘horizontal’ or ‘vertical’.

• sort (bool or string) – True or ‘ascending’ sorts the features by median, ‘de-
scending’ uses the reverse order.

• bottom (float or string) – The value of zero-count features. If you are using a
log axis, you may want to set this to 0.1 or any other small positive number. If a string, it
must be ‘pseudocount’, then the CountsTable.pseudocount will be used.

• grid (bool or None) – Whether to add a grid to the plot. None defaults to your
existing settings.

• **kwargs – named arguments passed to the plot function.

Returns The axes with the plot.

Return type matplotlib.axes.Axes

scatter_reduced_samples(vectors_reduced, color_by=None, color_log=None, cmap=’viridis’,
ax=None, tight_layout=True, **kwargs)

Scatter samples after dimensionality reduction.

Parameters

• vectors_reduced (pandas.Dataframe) – matrix of coordinates of the samples
after dimensionality reduction. Rows are samples, columns (typically 2 or 3) are the com-
ponent in the low-dimensional embedding.

• color_by (string or None) – color sample dots by phenotype or expression of a
certain feature.

• color_log (bool or None) – use log of phenotype/expression in the colormap. De-
fault None only logs expression, but not phenotypes.

• cmap (string or matplotlib colormap) – color map to use for the sample
dots.

4.3. API 33

singlet Documentation, Release 0.4

• ax (matplotlib.axes.Axes) – The axes to plot into. If None (default), a new figure
with one axes is created. ax must not strictly be a matplotlib class, but it must have
common methods such as ‘plot’ and ‘set’.

• tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at
the end of the plotting. If it is a dict, pass it unpacked to that function.

• **kwargs – named arguments passed to the plot function.

Returns matplotlib.axes.Axes with the axes containing the plot.

scatter_statistics(features=’mapped’, x=’mean’, y=’cv’, ax=None, tight_layout=True, leg-
end=False, grid=None, **kwargs)

Scatter plot statistics of features.

Parameters

• features (list or string) – List of features to plot. The string ‘mapped’ means
everything excluding spikeins and other, ‘all’ means everything including spikeins and
other.

• x (string) – Statistics to plot on the x axis.

• y (string) – Statistics to plot on the y axis.

• ax (matplotlib.axes.Axes) – The axes to plot into. If None (default), a new figure
with one axes is created. ax must not strictly be a matplotlib class, but it must have
common methods such as ‘plot’ and ‘set’.

• tight_layout (bool or dict) – Whether to call matplotlib.pyplot.tight_layout at
the end of the plotting. If it is a dict, pass it unpacked to that function.

• legend (bool or dict) – If True, call ax.legend(). If a dict, pass as **kwargs to
ax.legend.

• grid (bool or None) – Whether to add a grid to the plot. None defaults to your
existing settings.

• **kwargs – named arguments passed to the plot function.

Returns matplotlib.axes.Axes with the axes contaiing the plot.

34 Chapter 4. Contents

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

35

singlet Documentation, Release 0.4

36 Chapter 5. Indices and tables

Bibliography

[tsne] L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine
Learning Research 9(Nov):2579-2605, 2008.

37

singlet Documentation, Release 0.4

38 Bibliography

Python Module Index

s
singlet.counts_table, 25
singlet.dataset.cluster, 25
singlet.dataset.feature_selection, 29
singlet.dataset.fit, 30
singlet.featuresheet, 25
singlet.samplesheet, 25

39

singlet Documentation, Release 0.4

40 Python Module Index

Index

A
average() (singlet.dataset.Dataset method), 22

B
bootstrap() (singlet.dataset.Dataset method), 22

C
Cluster (class in singlet.dataset.cluster), 25
clustermap() (singlet.dataset.plot.Plot method), 31
compare() (singlet.dataset.Dataset method), 22
copy() (singlet.dataset.Dataset method), 22
correlate_features_features() (sin-

glet.dataset.correlations.Correlation method),
27

correlate_features_phenotypes() (sin-
glet.dataset.correlations.Correlation method),
27

correlate_phenotypes_phenotypes() (sin-
glet.dataset.correlations.Correlation method),
27

correlate_samples() (sin-
glet.dataset.correlations.Correlation method),
28

Correlation (class in singlet.dataset.correlations), 27
counts (singlet.dataset.Dataset attribute), 23

D
Dataset (class in singlet.dataset), 22
dbscan() (singlet.dataset.cluster.Cluster method), 25
DimensionalityReduction (class in sin-

glet.dataset.dimensionality), 28

E
expressed() (singlet.dataset.feature_selection.FeatureSelection

method), 29

F
featuremetadatanames (singlet.dataset.Dataset attribute),

23

featurenames (singlet.dataset.Dataset attribute), 23
FeatureSelection (class in sin-

glet.dataset.feature_selection), 29
FeatureSheet (class in singlet.featuresheet), 25
featuresheet (singlet.dataset.Dataset attribute), 23
Fit (class in singlet.dataset.fit), 30
fit_single() (singlet.dataset.fit.Fit method), 30
from_datasetname() (singlet.featuresheet.FeatureSheet

class method), 25
from_datasetname() (singlet.samplesheet.SampleSheet

class method), 25
from_sheetname() (singlet.featuresheet.FeatureSheet

class method), 25
from_sheetname() (singlet.samplesheet.SampleSheet

class method), 25

G
gate_features_from_statistics() (singlet.dataset.plot.Plot

method), 32

H
hierarchical() (singlet.dataset.cluster.Cluster method), 26

K
kmeans() (singlet.dataset.cluster.Cluster method), 26

M
mutual_information() (sin-

glet.dataset.correlations.Correlation method),
28

N
n_features (singlet.dataset.Dataset attribute), 23
n_samples (singlet.dataset.Dataset attribute), 23

O
overdispersed_strata() (sin-

glet.dataset.feature_selection.FeatureSelection
method), 30

41

singlet Documentation, Release 0.4

P
pca() (singlet.dataset.dimensionality.DimensionalityReduction

method), 29
Plot (class in singlet.dataset.plot), 31
plot_coverage() (singlet.dataset.plot.Plot method), 32
plot_distributions() (singlet.dataset.plot.Plot method), 33

Q
query_features_by_counts() (singlet.dataset.Dataset

method), 23
query_features_by_metadata() (singlet.dataset.Dataset

method), 23
query_features_by_name() (singlet.dataset.Dataset

method), 23
query_samples_by_counts() (singlet.dataset.Dataset

method), 24
query_samples_by_metadata() (singlet.dataset.Dataset

method), 24
query_samples_by_name() (singlet.dataset.Dataset

method), 24

R
rename() (singlet.dataset.Dataset method), 24

S
sam() (singlet.dataset.feature_selection.FeatureSelection

method), 30
samplemetadatanames (singlet.dataset.Dataset attribute),

24
samplenames (singlet.dataset.Dataset attribute), 24
SampleSheet (class in singlet.samplesheet), 25
samplesheet (singlet.dataset.Dataset attribute), 24
scatter_reduced_samples() (singlet.dataset.plot.Plot

method), 33
scatter_statistics() (singlet.dataset.plot.Plot method), 34
singlet.counts_table (module), 25
singlet.dataset (module), 22
singlet.dataset.cluster (module), 25
singlet.dataset.correlations (module), 27
singlet.dataset.dimensionality (module), 28
singlet.dataset.feature_selection (module), 29
singlet.dataset.fit (module), 30
singlet.dataset.plot (module), 31
singlet.featuresheet (module), 25
singlet.samplesheet (module), 25
split() (singlet.dataset.Dataset method), 24

T
to_dataset_file() (singlet.dataset.Dataset method), 25
tsne() (singlet.dataset.dimensionality.DimensionalityReduction

method), 29

U
umap() (singlet.dataset.dimensionality.DimensionalityReduction

method), 29
unique() (singlet.dataset.feature_selection.FeatureSelection

method), 30

42 Index

	Requirements
	Install
	Usage example
	Contents
	Indices and tables
	Bibliography
	Python Module Index

